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Abstract

In this thesis we discuss a new out-of-equilibrium finite-size scaling method which
can be used to determine the critical parameters, i.e. the critical temperature and
critical exponents, of any second order phase transition without reaching the thermal
equilibrium. Such a method is based on the Renormalization Group framework just
as equilibrium finite-size scaling is.

This technique is most interesting for those system exhibiting very slow relax-
ation dynamics. In most cases equilibrium methods are difficult to apply since
thermalization is attained only for relatively small system sizes, often at a high
computational cost.

As a representative case of this class of problems, we apply our new method to
the three-dimensional bimodal Edwards-Anderson model describing the behaviour
of an Ising spin-glass. The very determination of its critical temperature and critical
exponents has been the subject of intense studies in the last thirty years, during
which, different estimates of the critical parameters have been given. In order to
obtain more precise estimates it has always been necessary to employ large amounts
of computational resources, and, very often, dedicated machines have been used.

In this thesis we present the estimates of the critical parameters obtained using
the developed out-of-equilibrium method. Results are compatible and comparable to
those obtained most recently from equilibrium simulations executed on a dedicated
machine. Our estimates are the second most precise so far.

In order to obtain these results we exploited the computational resources given
by recent Graphics Processing Units (GPUs), which allowed us to exceed by, at least,
one order of magnitude the performances of recent high-end CPUs. We wrote a
highly tuned code implementing the Metropolis Monte Carlo (MC) dynamics using
which we could obtain the necessary amount of statistics.

The thesis is organized as follows. In Chapter 1 we give a basic introduction to
the Renormalization Group approach to second-order phase transitions, determining
the scaling form in the relaxation out-of-equilibrium regime. We also describe some
features of spin-glasses highlighting the problems posed by finite-dimensional models.
In Chapter 2 we briefly review the basic concepts of GPU programming, stressing the
importance of changing the point of view on data structures as usually implemented
for serial execution on CPUs. In Chapter 3 we describe our implementation of the
MC simulation for single- and multi-GPU systems reviewing the past literature and
discussing the solutions we found for different problems. In Chapter 4 we discuss in
some further detail the out-of-equilibrium framework as based on Renormalization
Group scaling arguments, giving a detailed account of the past literature. We
conclude by discussing our out-of-equilibrium finite-size scaling ansatz. In Chapter 5
we finally present our results: we begin by giving the out-of-equilibrium generalization
of observables which are usually defined in the equilibrium regime, paying some
attention to the characterization of their out-of-equilibrium scaling properties. We
then continue by discussing the approximations we adopted and the various data
analyses. Moreover, some consistency checks are shown. Further details are reported
in the Appendices A and B. Finally, in Chapter 6 we summarize the results and we
draw conclusions.
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Chapter 1

Introduction

In this chapter we review the Renormalization Group (RG) approach as applied
to second-order, or more precisely continuous, phase transitions in statistical
mechanics models. Indeed, the RG is not an analytical tool allowing us to calculate
detailed properties of a given model, but rather a method that predicts general
scaling properties characterizing universal large-scale critical behaviour.

We show how in this context it is possible to employ RG to predict finite-
size scaling relations that can be applied to finite-size systems Monte Carlo (MC)
simulations, allowing us to study phase transitions whose critical behaviour cannot
be determined by means of analytical methods.

Finally, we present the physical system we are interested in describing its phe-
nomenology along with the Statistical Mechanics model describing it. In this
presentation we follow the lines of [1, 2].

1.1 The Renormalization Group

1.1.1 Statistical Mechanics and Critical Systems

In equilibrium statistical mechanics the starting point for the description of the
equilibrium thermodynamics of a given system is the HamiltonianH = H({C}, {Kn}),
which is a function of the set of N generalized dynamic coordinates {C}, and M
coupling constants K = {Kn}. Generally speaking, the Hamiltonian can be written
as

HN({C},K) = −βHN({C},K) =
M∑
n=1

KnΘn({C}) (1.1)

where β = (kBT )−1 is the inverse absolute temperature and Θn are functions of the
coordinates {C}. Next, one defines the partition function, or partition sum, Z

ZN(K) =
∑
{C}

exp [HN({C},K)] , (1.2)

where the sum
∑
{C} is over all possible values of the generalized coordinates.

The link with the equilibrium thermodynamics of the system is provided by the
free-energy density

f(N, β,K) = − 1
Nβ

logZN(K) = u− Ts, (1.3)
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where u = U/N and s = S/N are the internal energy and entropy densities,
respectively. Thermodynamic observables, such as susceptibilities, magnetization,
heat capacity and others, are obtained by taking the proper derivatives of (1.3).

Indeed, f is proportional to the logarithm of Z, which is a sum of exponential
functions, which are analytic. Hence, for finite-size systems no singular behaviour
can emerge.

However, when one takes the thermodynamic limit, i.e. N →∞, the partition
sum Z might develop singularities, e.g. zeros: an infinite sum of analytic functions
need not be analytic itself. It follows that phase transitions only occur in the
thermodynamic limit. In fact, before the pioneering work of L. Onsager in 1944 [3] it
was still doubted that phase transitions could be described by statistical mechanics
models of finite-dimensional systems.

Observables show, in general, a singular behaviour at critical points, both for
discontinuous and continuous transitions. Such a singular behaviour only occurs in
the infinite-volume limit.

By using the RG approach, one can argue that the infinite-volume free-energy
density can be written as a sum of a singular fs and of a regular part fb at the
critical point in the thermodynamic limit, where the latter is usually referred to as
background

f(β,K) = lim
N→∞

f(N, β,K) = fs(β,K) + fb(β,K). (1.4)

Let us now focus on second-order or continuous phase transitions and define the
two-point correlation function as G = G(|~x− ~y|) = G(r) for isotropic systems. One
observes that for β 6= βc, where βc is the critical inverse temperature, the correlation
length ξ takes on a finite value. The system is correlated at distances of order ξ
and the correlation function exponentially decreases for r � ξ, which means that
thermal fluctuations are statistically independent at large distances. More precisely,
the correlation function in d dimensions can be generally written as

G(r) ∝ exp(−r/ξ)
rd−2 , (1.5)

as long as ξ is finite.
On the other hand, at β = βc the correlation length diverges, which means that

the correlation function behaves as a power-law

G(r) ∝ 1
rd−2+η , (1.6)

where η is the anomalous dimension. A diverging ξ implies that thermal fluctuations
are statistically correlated along the entire (infinite in the thermodynamic limit)
system. Differently from first-order transition, there is no phase coexistence in this
case, so no latent heat is present for second-order phase transitions.

1.1.2 Universality and Scaling at the critical point

We give here a brief historical introduction of the concepts of universality and scaling
focusing, as a test-ground, on magnetic systems in order to fix the notation. Above,
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we mentioned that near a continuous phase transition the correlation length diverges.
More precisely, ξ diverges as a power law near βc, i.e.

ξ ∼ ε−ν , ε = β − βc
βc

, (1.7)

where ν is called critical exponent. Other quantities behave as a power law near
the critical point, defining an entire set of critical exponents.

Let c be the specific heat and χ the susceptibility of the order parameter, the
magnetization m, with respect to a small change of an external field H. In principle,
according to the direction of the critical temperature limit, i.e. ε→ 0±, one may
expect to have different values of the exponents. Taking this into account, we can
write the following relations

c ∼ ε−α

χ ∼ ε−γ

m ∼ εβ

ξ ∼ ε−ν

for ε > 0, H = 0


c ∼ −ε−α′

χ ∼ −ε−γ′

m ∼ −εβ′

ξ ∼ −ε−ν′
for ε < 0, H = 0 (1.8)

Moreover, at the critical temperature the following relations hold

m ∼ H1/δ, ε = 0,
G(r) ∼ r2−d−η, ε = 0, H = 0.

(1.9)

Experimentally it was found that the critical exponents defined above were not
independent. First of all, the exponents appearing on both sides of the critical point,
ε→ 0±, are the same, which means we can drop the prime so that we end up with
six exponents; note, however, that amplitudes differ. Second, there are only two
independent exponents, because of the following scaling relations:

α+ 2β + γ = 2,

δ − 1 = γ

β
,

2− α = dν,

ν(2− η) = γ.

(1.10)

The first three relations are called Rushbrook [4, 5], Widom [6, 7] and Josephson
[8, 9] identities, respectively. None of these relations has been rigorously proved.
Only inequalities have been proved. These relations hold in the two-dimensional
Ising model and in other systems for which an exact solution has been found. They
have been also verified extensively in numerical studies and experiments. They will
be justified below by using the RG approach. Having six exponents and four scaling
relations, we conclude that there exist only two independent exponents, that, once
evaluated, can be used to obtain the four remaining ones.

One of the most important results of the RG is the following: near the critical
point the large-scale behaviour of dimensionless quantities is the same for a broad
class of system whose description at the microscopic level might differ significantly.
Such a class is defined by the dimensionality and the symmetry properties of the order
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parameter, by the space dimensionality of the model itself and whether interactions
are long- or short-range. Such a set of models defines a static universality class.
We will see that the large-scale behaviour at criticality can be parametrized using
critical exponents which must have the same value for every model belonging to a
given universality class. This is the definition of universality.

The critical power-law behaviour of, e.g., liquid and ferromagnetic systems was
already explained by the van der Waals and the Weiss mean-field theories, respectively.
The name mean field indicates that these theories focus on the behaviour of the order
parameter discarding thermal fluctuations: each degree of freedom is described as
interacting with the averaged behaviour of the rest of the system. Universality was
also explained in a unifying framework by the phenomenological theory of Landau,
who showed that different problems could be described by means of very similar
functional forms.

While it correctly predicts power-law behaviours and universality, mean-field
theory is not quantitatively correct. For instance, the critical exponents calculated
exactly in the two-dimensional Ising model do not have the expected mean-field
values. Second, the magnetization exponent β was measured in simple liquids finding
β ' 1/3 instead of the mean-field value β = 1/2.

These facts could not be explained in the framework of Landau mean-field theory:
they have been finally addressed with the introduction of the Renormalization Group.

1.1.3 Kadanoff’s idea

In 1966 L.P. Kadanoff [10] proposed an argument which could qualitatively account
for the existence of Widom scaling hypothesis [11] and for the scaling relations
among critical exponents. The whole argument rests upon the divergence of the
correlation length ξ at the critical point.

Let us consider a system with short-range interactions at some inverse tempera-
ture β and let a be a microscopic characteristic length scale, e.g., the lattice spacing:
degrees of freedom in regions of size `a, with a� `a� ξ(β), will essentially behave
as a single variable. Hence, we perform a coarse graining of the degrees of freedom
in a block of dimension `a and write a new Hamiltonian for these new variables,
called block variables. Now, Kadanoff’s hypothesis was that, since in the original
theory the interactions were short-ranged, so should they be for the block variables.
What are the consequences of the scale transformation on the new system? Let
us consider a magnetic system coupled to a thermal bath at reduced temperature
ε = (β − βc)/βc and to a reduced external field h = βH, keeping in mind that the
critical values of the control parameters are ε = h = 0. The singular part of the free
energy is assumed to scale as

Nfs(ε, h) = N`−dfs(ε`, h`), (1.11)
since the number of the block variables is N`−d, where ε` and h` are the control
parameters for the blocked lattice. Hence, the singular part of the free-energy density
scales as

fs(ε, h) = `−dfs(ε`, h`), (1.12)
Under a scale transformation the correlation length decreases by a factor `

ξ` = ξ/`, (1.13)
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so that after the transformation the system gets further away from criticality. Hence,
the block variables, which are correlated on shorter distances, are coupled to a
different value of the reduced temperature. A similar argument holds for the external
field.

Since we are interested in studying the scaling behaviour near the critical tem-
perature, we assume that the control parameters transform as

ε` = ε`yε , h` = h`yh , yε, yh > 0. (1.14)

The singular part of the free-energy density scales therefore as

fs(ε, h) = `−dfs(ε`yε , h`yh). (1.15)

We are free to choose the value of `, and we do so by fixing |ε|`yε = 1, obtaining

` = |ε|−1/yε . (1.16)

As a result, we get the following scaling form for the free energy

fs(ε, h) = |ε|d/yεfs(±1, h/|ε|yh/yε) = |ε|−d/yεF±(h/|ε|yh/yε). (1.17)

This expression allows one to derive Widom scaling form [11] for the equation of
state

h = mδg

(
ε

m1/β

)
. (1.18)

where g is some scaling function. Let us set h = 0 in (1.17): we have that fs(ε, h) ∝
|ε|d/yε , so that the specific heat reads

c ∝ |ε|d/yε−2, (1.19)

allowing us to identify the critical exponent α as

2− α = d

yε
. (1.20)

For the correlation length ξ we can repeat the scaling argument we just discussed
for the free energy, obtaining

ξ(ε) = ` ξ(ε`) = ` ξ(ε`yε) = |ε|−1/yεξ(1), (1.21)

where ξ(1) is a constant. Thus, we identify the exponent ν as

ν = 1
yε
. (1.22)

Comparing equations (1.20) and (1.22), we obtain Josephson identity

2− α = dν. (1.23)

Indeed, Kadanoff’s argument gives us a deep insight into the physics of the
problem, allowing us to determine some scaling relations linking critical exponents.
At the same time it leaves us with no means for calculating the value of critical
exponents nor with an explanation for universality.



6 1. Introduction

1.1.4 The Renormalization Group

Let us now introduce the main concepts of the Renormalization Group (RG) as
proposed in the seminal papers of K.G. Wilson [12, 13] and F. J. Wegner [14].
The RG stands as a mathematical generalization of Kadanoff’s ideas. First of all,
it is easy to understand that after a scale transformation the new Hamiltonian
cannot have the same functional form as the original one: considering an Ising
model with nearest-neighbour interactions only, after a block transformation the new
Hamiltonian does include next-to-nearest neighbour interactions too. It is possible
to take this behaviour into account by considering the most general Hamiltonian
compatible with the symmetries of the problem in the form of eq. (1.1). Such
Hamiltonian functions are defined on the space of all possible coupling constants
K. However, we stress that this construction should not be considered as ‘rigorous’,
since many technical aspects are still under debate [15, 16, 17, 18]. Nonetheless, it
is useful for the implementation of approximation schemes which eventually lead to
controlled quantitative results.

Hence, the starting point is that the functional form of the Hamiltonian changes
under scale transformations. The mapping between Hamiltonians is called Renor-
malization Group transformation acting on the coupling space. Indicating the
RG transformation of length scale ` > 1 as R` we write

K′ = R`(K). (1.24)

We immediately notice that, by definition, R` is not invertible and that the transfor-
mations form a semi-group since they satisfy the composition rule

R`1`2(K) = R`1 R`2(K), (1.25)

i.e. two successive transformations of length scales `1 and `2 must correspond
to a single one of scale `1`2. Finally, we stress that eq. (1.24) represents a non-
linear transformation, hence the new coupling constants K′ are generally non-linear
functions of K.

Let us now characterize the action of the RG transformation on the partition
sum and on the free-energy density: the partition function of the original system
reads

ZN(K) =
∑
{C}

exp [HN({C},K)] ; (1.26)

the block transformation acts on the exponential as

exp
[
HN′({C′},K′)

]
=
∑
{C}

P ({C}, {C′}) exp [HN({C},K)] , (1.27)

where N ′ = `−dN , and P ({C}, {C′}) is a projection operator.
It is generally assumed that the projector possesses the following properties:

1. P ({C}, {C′}) ≥ 0,

2. P ({C}, {C′}) should possess the symmetries of the original system,

3.
∑
{C′} P ({C}, {C′}) = 1.



1.1 The Renormalization Group 7

The first property guarantees that the right-hand side of (1.27) is positive, so that
one can rewrite is as the exponential of a new effective Hamiltonian which has the
same symmetries of the original one because of the second property. Finally, the third
property implies that the partition sum is invariant under the RG transformation,
in fact we could write

ZN′(K′) =
∑
{C′}

exp
[
HN′({C′},K′)

]
=
∑
{C′}

∑
{C}

P ({C}, {C′}) exp [HN({C},K)]

=
∑
{C}

exp [HN({C},K)] = ZN(K).
(1.28)

It follows that the singular part of the free-energy density scales as

fs(K) = 1
N
Fs(K) = `−d

N ′
Fs(K′) = `−dfs(K′). (1.29)

One remark is in order: although the transformation (1.24) is highly non-trivial
it is, however, analytic and the main advantage given by the RG framework is that
it is possible to approximate it.

We can now identify the origin of the singular behaviour: the RG transformation
(1.24) defines a recursion relation, the so-called renormalization flow for the
coupling constants, which, after an infinite number of iterations, i.e., when all
degrees of freedom have been integrated out, reaches a fixed point

K∗ = R`(K∗). (1.30)

We can understand the behaviour of (1.30) by using an analogy, studying a damped
dynamic system described by the differential equation

ẋ = −dV (x)
dx = − d

dx
[
a(x− xc)2 + b(x− xc)4 + c

]
, (1.31)

with a < 0 and b > 0 so that there are two minima, x1 and x2, for the potential
V (x), and x = xc is a maximum, i.e. an unstable point, with x1 < xc < x2. The
infinite-time limit of the solution of the differential equation (1.31), x = f(t, x0), is
a discontinuous function of the initial condition x0

x2 = lim
x0→x+

c

lim
t→∞

f(t, x0) 6= lim
x0→x−c

lim
t→∞

f(t, x0) = x1. (1.32)

If we associate x1, x2 and xc to the RG fixed points and the time variable to the
number of applications of the RG transformation, this is exactly what happens in
the limit of an infinite number of iterations: performing a continuous change in the
initial choice of the coupling constants K, the fixed point can change discontinuously.

It is possible to characterize fixed points by using the recursion relation for the
correlation length which reads

ξ(K∗) = ξ(K∗)/`. (1.33)

Hence, the fixed-point value for the correlation length can either be ξ(K∗) = 0,
defining trivial fixed points, or ξ(K∗)→∞, defining critical fixed points.
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It is easy to see that the basin of attraction of a critical fixed point is the set
of initial conditions for which the correlation length is divergent, i.e. critical fixed
points must have unstable directions for the RG flow.

Let us now study the properties of the RG transformation near fixed points.
Indeed, the recursion relation (1.24) is non-linear but it is possible to give a linear
approximation of it near a fixed point. Hence, we write each coupling constant as
its fixed-point value plus a small deviation

Kn = K∗n + δKn, (1.34)

which clearly transform as
K ′n(K) = K∗n + δK ′n. (1.35)

We can write the Taylor expansion of the last expression as

K ′n(K∗ + δK) = K∗n +
∑
m

∂K ′n
∂Km

∣∣∣∣
Km=K∗m

δKm +O
(
(δK)2

)
, (1.36)

and finally write the transformed variations as

δK ′n =
∑
m

∂K ′n
∂Km

∣∣∣∣
Km=K∗m

δKm =
∑
m

MnmδKm. (1.37)

Now, we make a rather simplifying assumption: the diagonalizability of the matrix
M . The eigenvalue equation for the matrix M reads∑

m

Mmn e
(σ)
m = Λ(σ)e(σ)

n , (1.38)

where e(σ)
m and Λ(σ) stand for the eigenvector and the eigenvalue respectively, both

labeled by σ. Because of the semi-group property of R` one has that M (`1)M (`2) =
M (`1`2), which implies for the eigenvalues

Λ(σ)
`1

Λ(σ)
`2

= Λ(σ)
`1`2

. (1.39)

Obviously, Λ(σ)
`=1 = 1. We take the derivative of both sides of equation (1.39) as

follows
∂

∂`2

(
Λ(σ)
`1

Λ(σ)
`2

) ∣∣∣∣
`2=1

= ∂

∂`2
Λ(σ)
`2

∣∣∣∣
`2=1

Λ(σ)
`1

= yσ Λ(σ)
`1
,

∂

∂`2
Λ(σ)
`1`2

∣∣∣∣
`2=1

= d
d`Λ(σ)

`

∂`

∂`2

∣∣∣∣
`2=1

= `1
d
d`1

Λ(σ)
`1
,

(1.40)

where we have defined the intermediate variable ` = `1`2. Equating these two last
lines we get the differential equation

`1
d
d`1

Λ(σ)
`1

= yσ Λ(σ)
`1
, (1.41)

which can be integrated as ∫ Λ(σ)
`

Λ(σ)
1

dΛ(σ)
`1

Λ(σ)
`1

= yσ

∫ `

1

d`1
`1
, (1.42)
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thus leading to the following expression for the eigenvalue of the linearized RG
transformation

Λ(σ)
` = `yσ . (1.43)

Now, we continue by expanding the coupling constants variation δK on the
eigenvector basis as

δK =
∑
σ

(
δK · e(σ)

)
e(σ) =

∑
σ

uσ e(σ), (1.44)

where the projection of the coupling constants on the eigenvector basis δK ·e(σ) = uσ
is the so-called scaling field. The RG flow of δK reads

δK′ = M(`) δK = M(`) ∑
σ

uσ e(σ) =
∑
σ

uσ Λ(σ)
` e(σ) =

∑
σ

u′σ e(σ). (1.45)

Hence, some scaling fields will grow along the RG flow, some will shrink and some
will be unchanged according to the corresponding eigenvalues. Scaling fields are
usually classified as

• relevant: Λ(σ)
` = `yσ > 1, ⇒ yσ > 0;

• marginal: Λ(σ)
` = `yσ = 1, ⇒ yσ = 0;

• irrelevant: Λ(σ)
` = `yσ < 1, ⇒ yσ < 0;

where, clearly, ` > 1. The relevant scaling fields are those corresponding to the
control parameters which need to be tuned experimentally in order to reach the
critical point. For ferromagnets we need to be at the critical temperature and at
zero external field, hence temperature and magnetic field are relevant variables.

It is possible to classify the nature of fixed points according to their codimension,
i.e. the difference between the dimensionality of the coupling-constant space and
that of the basin of attraction. This concept is useful because it holds also in the
limit of infinite dimensional spaces. Since we are dealing with continuous phase
transitions we only consider two cases:

1. codimension 0 and ξ(K∗) = 0: this fixed point is called sink and its basin of
attraction is defined by values of the coupling constants belonging to a definite
phase of the system;

2. codimension 2 or greater and ξ(K∗)→∞: this is a critical fixed point.

We can now examine the scaling behaviour of the singular part of the free-energy
density in proximity of the critical fixed point. Let urk , k = 1, . . . , R, be the relevant
scaling fields, umk , k = 1, . . . ,M , and uik , k = 1, . . . ,∞, the marginal and irrelevant
ones respectively. Hence, we get

fs(ur1 , . . . , urR , um1 , . . . , umM , ui1 , . . .)
=`−dfs(ur1`

yr1 , . . . , urR`
yrR , um1 , . . . , umM , ui1`

yi1 , . . .).
(1.46)

We are always left with the freedom of choice for the length scale `, and since we want
to study the critical limit urk � 1 as the scale changes we can choose ` = |ur1 |−1/yr1 ,
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so that we keep fixed the product |ur1 |`yr1 = 1. Indeed, there is no need to choose
the scaling field ur1 over the other relevant ones, we do so to keep the notation
simple. We substitute in the previous expression obtaining

f(ur1 , . . . , urR , um1 , . . . , umM , ui1 , . . .)
= |ur1 |d/yr1f(±1, . . . , urR |ur1 |−yrR/yr1 , um1 , . . . , umM , ui1 |ur1 |−yi1/yr1 , . . .).

(1.47)

By definition yik/yr1 < 0 and yrk/yr1 > 0 so that in the critical limit urk → 0
the irrelevant scaling fields vanish, while the marginal scaling fields give rise to
logarithmic corrections.

As we pointed out for the Kadanoff picture, in a much more naive way, the
scaling-field exponents yσ are related to the usual critical exponents, and the scaling
behaviour near the critical point naturally emerges performing the RG transformation.
Scaling forms of other quantities, e.g. the correlation function, allow us to recover
scaling relations between different critical exponents.

The behaviour near the critical point is dictated only by relevant scaling fields
and not by the starting point of the RG transformation. Hence, the original form
of the Hamiltonian plays no role: this mechanism accounts for the existence of
universality. Finally, in the RG framework it is possible to compute the values of
critical exponents once a reasonable approximation of the RG transformation is
given. Since in this work we are mainly interested in numerical estimations of critical
parameters we do not go into further details.

Finally, we summarize the relations linking the various critical exponents of a
magnetic system to those of the relevant scaling fields, yε and yh:

ν = 1
yε
, α = 2− d

yε
,

η = d+ 2(1− yh), δ = yh
d− yh

,

β = 1
yε

(d− yh), γ = 1
yε

(2yh − d).

(1.48)

1.2 Scaling in Monte Carlo Simulations
Monte Carlo (MC) simulations are one of the most valuable techniques when an
analytic approach is not available for a given model. Basically, the probability
distribution of the degrees of freedom is evolved according to a Markov chain, and
eventually converges to the equilibrium distribution defined as

PN({C},K) = 1
ZN

exp [HN({C},K)] . (1.49)

However, since we know that phase transitions cannot occur for finite systems,
which are indeed the only ones we can simulate, we review first some general
properties which can be effectively employed in numerical simulations.

1.2.1 Finite-Size Scaling

Let us consider a magnetic system for which in the thermodynamic limit the two
relevant scaling fields are those associated with the reduced temperature and the
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external field, i.e. uε and uh. Near the critical point, where uε = uh = 0, they can
be expanded as

uε = ε+O(ε2, h2), uh = h+O(εh), (1.50)

with ε = (β − βc)/βc. The RG transformation is local, hence it is still meaningful to
apply it to a finite system. Let L be the linear size of the system, the associated
scaling field should be uL ∼ L−1 since under the RG transformation one has

L−1 → `L−1, (1.51)

so that the associated eigenvalue exponent is yL = 1. We want to stress that
this is a good approximation in the case of periodic boundary conditions since
in the general case the scaling field should contain higher order terms such as
uL ∼ L−1 + L−2 + L−3 + · · · , which is the case for fixed boundary conditions
[19, 20, 21, 22]. There is no evidence of such behaviour for periodic systems.

Setting h = 0 and discarding marginal scaling fields, the scaling form for the
singular part of the free-energy density reads

fs(ε, L−1, ui1 , . . . , uiI ) = |ε|d/yεfs(±1, L−1|ε|−1/yε , ui1 |ε|−yi1/yε , . . . , uiI |ε|
−yiI /yε).

(1.52)
Now, we substitute the expressions for the critical exponents, d/yε = 2 − α and
1/yε = ν and define a new scaling function such that the scaling form explicitly
depends on the system size

fs(ε, L−1, ui1 , . . . , uiI )
= |ε|2−αfs(±1, L−1|ε|−ν , ui1 |ε|−yi1ν , . . .)

= |ε|2−α(L−1|ε|−ν)
2−α
ν (L−1|ε|−ν)

α−2
ν fs(±1, L−1|ε|−ν , ui1 |ε|−yi1ν , . . .),

(1.53)

where, up to now, we have just added two prefactors whose product is one. It is pos-
sible to write the product (L−1|ε|−ν)

α−2
ν fs(±1, L−1|ε|−ν , . . .) = f̃s(±1, L−1|ε|−ν , . . .)

thus defining a new scaling function f̃ . We continue by writing

|ε|2−α(L−1|ε|−ν)
2−α
ν f̃s(±1, L−1|ε|−ν , ui1 |ε|−yi1ν , . . .)

= |ε|2−α(L−1|ε|−ν)
2−α
ν f̃s(±1, (εL1/ν)−ν , ui1Lyi1 (εL1/ν)−yi1ν , . . .),

(1.54)

where it appears that the dependence on εL1/ν can be factorized on each variable of
f̃ . Thus we define a new scaling function FL such that

|ε|2−α(L−1|ε|−ν)
2−α
ν f̃s(±1, (εL1/ν)−ν , ui1Lyi1 (εL1/ν)−yi1ν , . . .)

= |ε|2−α(L−1|ε|−ν)
2−α
ν FL(εL1/ν , ui1L

yi1 , . . .)

= L
α−2
ν FL(εL1/ν , ui1L

−ω1 , . . .)

(1.55)

where we have renamed the irrelevant scaling fields exponents as ωk = −yik , with
ωk > 0. Supposing to sort them in an increasing order, i.e. ω1 < ω2 < . . ., we can
expand the previous expression as

fs(ε, L−1, ui1 , . . .)

= L
α−2
ν GL(εL1/ν)

[
1 + ui1

Lω1
g1L(εL1/ν)

]
+O

(
L−2ω1 , L−ωk>1

)
.

(1.56)
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Hence, we expect data belonging to different linear sizes and reduced temperatures
for L(2−α)/νfs, to lie on the same curve as a function of εL1/ν , modulo scaling
corrections proportional to L−ω1 .

For RG invariant quantities the scaling relations do not involve any prefactor
proportional to powers of L, hence it is possible to use such quantities, such as
Binder cumulants or the rescaled correlation length Rξ = ξ/L, to estimate the critical
temperature and, at least, the critical exponent ν: non-rescaled data belonging to
different sizes and temperatures will intersect at the critical point, modulo scaling
corrections; the exponent ν can be determined by the scaling of data onto a single
curve in the parameter εL1/ν .

This is the technique we will generalize in the out-of-equilibrium relaxation
setting.

1.2.2 Finite-Time Scaling

Now, we discuss the scaling in the out-of-equilibrium relaxation regime. We define
the relevant scaling field for the time variable t as

ut ' t−1. (1.57)

We can think of this scaling field as describing an anisotropic direction evolving
along the RG flow near the critical point, ut = 0, with an eigenvalue `yt defined by
some function of the coupling constants. Let us write the scaling expression for a
generic observable A scaling as Lλ/ν and introducing the new scaling field at zero
external field and limiting the dependence to the first irrelevant operator

A(ε, L−1, t−1, ui1)

= Lλ/νGA,L(εL1/ν , tL−yt)
[
1 + ui1

Lω1
g1A,L(εL1/ν , tL−yt)

]
+O

(
L−2ω1

)
.

(1.58)

Usually one defines yt = z as the dynamic exponent which satisfies z > 0. It is
possible to write new scaling functions in order to obtain a time-scaled relation as

A(ε, L−1, t−1, ui1)

= Lλ/ν
(
t−1/zL

)−λ
GA,t(εL1/ν , tL−z)

×
[
1 + ui1

Lω1

(
t−1/zL

)ω1
g1A,t(εL1/ν , tL−z)

]
+O

(
L−2ω1

)
= tλ/zGA,t(εL1/ν , tL−z)

[
1 + ui1

tω1/z
g1A,t(εL1/ν , tL−z)

]
+O

(
L−2ω1

)
.

(1.59)

Once again it clearly appears that the equilibrium limit is obtained when t−1/zL� 1.
This relation gives a qualitative explanation for the divergence of the equilibration
time τ as a function of the correlation length near the critical point

τ ∼ ξz, (1.60)

which is usually called critical slowing down. This behaviour is what hampers the
MC simulation approach to equilibrium at the critical temperature. The dynamic
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evolution of the system should behave as in the thermodynamic limit as long as
a� ξ(t)� L, where a is the lattice spacing, or equivalently for tL−z � 1. This is
the basis of the so-called Non-Equilibrium Relaxation (NER) method [23].

Systems sharing the same values of the static critical exponents, i.e. belonging to
the same static universality class, may belong to different dynamic universality
classes characterized by different values of z. In the famous work by Hohenberg
and Halperin [24] the latter are classified according to symmetry criteria.

In this work we will deal with the purely relaxational dynamics, or type-A
dynamics, resulting from the Metropolis algorithm which does not conserve the order
parameter.

1.3 Spin-Glasses
Spin-glasses (SGs) represent one of the most attractive test grounds for an out-
of-equilibrium method for the estimation of critical parameters. The reason is
easily explained: for the three-dimensional Edwards-Anderson model with bimodal
disorder (EA3D) the type-A dynamic exponent is z = 6.86(16) [25], while for the
three-dimensional Ising model z ∼ 2. This is the source of most difficulties in
obtaining equilibrium estimates for large systems. Such a problem has often been
faced through the construction of dedicated supercomputers [26, 27, 28, 29] and the
introduction of a new kind of dynamics, i.e. the Parallel Tempering (PT) dynamics
[30], which has slightly reduced the problem. However, still today the largest linear
size for which a reasonable number of disorder samples has been equilibrated is
L = 40 [31].

Let us now briefly review the main concepts and characteristics of SGs.

1.3.1 Phenomenology

SGs are disordered metallic alloys where the local magnetic dipoles interact with
each other via ferromagnetic and antiferromagnetic exchange interactions. This fact
introduces, alongside with disorder, the so-called frustration: the ground-state of
the system is generally not one where all dipoles minimize their exchange interactions.

The physical behaviour of such alloys is qualitatively the following: there exists
a transition temperature Tc above which the system behaves as a paramagnet,
i.e. the magnetization is proportional to the external magnetic field strength and
inversely proportional to the absolute temperature, according to Curie’s law; below
the critical temperature, if one switches off the external field the magnetization
follows a two-step decay, first to a plateau whose value is called thermoremnant
magnetization, then towards zero. The low-temperature behaviour is due to a
complex free energy landscape below Tc allowing the existence of aging effects similar
to those measured in structural glasses.

Cooling the system below the critical temperature in the presence of a small
external magnetic field, hFC , leads to a slowly varying value of the magnetization as
a function of the temperature. This is the so-called field-cooled magnetization
mFC. The first evidence for an aging behaviour [32] was obtained using the so-
called zero-field-cooled magnetization mZFC, which is measured after cooling
the system below the transition temperature and then applying an external magnetic
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Figure 1.1. Plot reprinted from reference [33].

field. One can compare the behaviour of mZFC to that of mFC by applying the
same magnetic field hFC in both cases. Once the sample has been cooled at zero
magnetic field, at first, immediately after the magnetic field has been applied, the
magnetization takes a value mZFC that is lower than mFC . Afterwards, as time goes
on at a fixed magnetic field hFC, the magnetization evolves towards the expected
mFC value. Moreover, the dynamics leading the magnetization from mZFC to mFC

depends on the waiting time tw, which is time elapsed from the quench below the
critical temperature to the application of the magnetic field [32], i.e. the derivative
∂m(tw + t)/∂t, with t > 0, depends on tw. This behaviour signals the presence of
an aging regime. This means that memory effects are present and that the system
has not reached an equilibrium state on the probed timescales: this is one of the
most important characteristics of spin-glasses.

In Fig. 1.1 we show typical results for mZFC and mFC as reported in [33] where
measures are taken at a given temperature and for a constant magnetic field. The
different curves are related to different dopings of the considered metallic alloy.

1.3.2 Mean-field models

The Sherrington-Kirkpatrick (SK) model [34] is a mean-field model for SGs and it is
defined by the following Hamiltonian

H = −
∑
i<k

Jik σiσk, (1.61)

where the coupling constants {Jik} are randomly drawn according to a Gaussian
probability distribution of mean J0 and variance J

P (Jik, J0, J) = 1√
2πJ2

exp
[
−(Jik − J0)2

2J2

]
(1.62)
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and the spins variables take on the integer values σi ∈ {−1,+1}.
The equilibrium solution for the minimization of the free-energy density has been

found in 1979 by G. Parisi [35, 36] through the so-called replica trick. Replicas
are different systems sharing the same disorder realization and are involved in the
calculation of the quenched average of the free-energy density

f(N, β) = [f(N, β, {Jik})] =
∑
{Jik}

P (Jik, J0, J) f(N, β, {Jik})

= − 1
Nβ

∑
{Jik}

P (Jik, J0, J) logZN(β, {Jik})

= − 1
Nβ

lim
n→0

∑
{Jik}

P (Jik, J0, J) Z
n
N − 1
n

(1.63)

where n denotes the number of replicas and the squared brackets the disorder average.
This strategy for the computation of the free energy is motivated by the fact that
the disorder average of a power of the partition sum is easier to evaluate with respect
to the average of the logarithm. The order parameter of this system is the so-called
overlap matrix Qαβ, which is defined as

Qab = 1
N

N∑
i=1

σai σ
b
i , ⇒ −1 ≤ Qab ≤ 1, (1.64)

where σai is the i-th spin belonging to the replica a. In the limit n→ 0 one needs to
give a different parametrization of the overlap matrix which is substituted by the one
parameter overlap function q = q(x). Since we average over the disorder the order
parameter has its own probability distribution P (q). A continuous phase transition
is signaled by a discontinuous change in the P (q): above the critical temperature
P (q) is a delta function centered at q = 0, while below the transition the q = 0 peak
vanishes and two new symmetric peaks develop linked by a continuous function.

In the paramagnetic phase the solution is invariant with respect to replicas
permutations, while in the low temperature phase this symmetry is broken signaling
the existence of a complex free energy landscape where the thermodynamic states
are arranged in a binary-tree or ultrametric fashion. This symmetry breaking is
called full Replica Symmetry Breaking (fRSB).

One of the most important physical properties of the fRSB phase is that it is
still present even when an external magnetic field is applied, thus defining a line of
critical temperatures, Tc = Tc(H) which is known as the deAlmeida-Thouless (dAT)
line. This is one of the most striking differences with respect to the mean-field Ising
model.

1.3.3 Finite-dimensional models

The picture of finite-dimensional spin-glass models is far less clear than the mean-field
one. The three-dimensional Edwards-Anderson model (EA3D) [37] is defined by the
Hamiltonian

H = −
∑
〈ik〉

Jik σiσk, σi ∈ {−1,+1}, (1.65)
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where this time the sum
∑
〈ik〉 is on nearest neighbours only in a cubic lattice

discretization. We studied the bimodal disorder distribution which is defined as

P (Jik) = 1
2 {δK(Jik − 1) + δK(Jik + 1)} (1.66)

where δK(a − b) = δab is the Kronecker delta, so that Jik ∈ {−1,+1}. Now, the
very existence of a continuous phase transition in the two real replicas overlap as
order parameter has been the subject of intense studies for almost 30 years. One
of the first estimates for the critical temperature was given in 1985 by R.N. Bhatt
and A.P. Young in [38] using the Binder cumulants crossing technique, while the
latest measure was obtained, with the same method, by the Janus collaboration [31]
in 2013, using the dedicated Supercomputer Janus which simulated a number of
disorder realization orders of magnitudes higher than that of [38]. In between, many
works on the subject have appeared using both equilibrium or out-of-equilibrium
techniques. Interestingly, many different estimates of critical parameters have been
published and for the critical temperature a systematic shift as a function of the
largest equilibrated system size is clearly visible. This drift is surely due to the
presence of large finite-size corrections to scaling [39].

As for the nature of the low temperature phase the quest for a clarifying answer is
still open with two major players on the scene: the fRSB and the droplet [40, 41, 42]
scenarios. The droplet picture is exact for some types of hierarchical lattices [43]
where the Kadanoff approach we described above can be exactly applied. According
to the droplet approach the low-temperature phase is characterized by the presence
of only two states which are related by the global spin-flip symmetry thus leading
to an overlap distribution characterized by two delta functions in contrast with the
fRSB mean-field solution describing an infinite number of states. The system relaxes
through droplet excitations just as a ferromagnet with an applied magnetic field
would do. The thermodynamic state is a mixture of the these two pure states. In
the fRSB description states would be continuously linked thus allowing to transform
the entire system from one state to another. The main assumptions of the droplet
description are the following: given a droplet excitation of characteristic length ξ the
excitation free energy Fξ, the activation energy Aξ and the probability distribution
P (Fξ) scale as

Fξ ∼ ξθ, Aξ ∼ ξψ, P (Fξ) ∼
1

Υξθ ρ(Fξ/Υξθ), (1.67)

where 0 < ψ < θ, Υ is a dimensional constant linked to the interfacial tension and
the function ρ satisfies the property ρ(0) > 0.

So far, no definitive evidence has been gathered validating one of the two pictures.
Many technical difficulties for the fRSB mean-field interpretation come from the
high value of the estimated lower critical dimension dL = 6. However, the droplet
and the fRSB descriptions are much different. As an example, the droplet scenario
differs from the fRSB picture for the action of the external magnetic field which
would destroy the transition, i.e. no dAT line is expected in the droplet picture.
Much effort has been spent in simulations in order to check for the presence of a
dAT line in the three-dimensional Edwards-Anderson model. From the most recent
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results [44] it appears that usual finite-size scaling techniques might not be the best
tool to locate the transition temperature.

The new out-of-equilibrium technique we are about to describe in this thesis,
which is generally applicable to any second-order phase transition, might turn out
to be a valuable tool also with respect to the problem of the low temperature phase
of finite-dimensional spin-glasses.
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Chapter 2

GPUs and High Performance
Computing

In this chapter we give a brief introduction to the main concepts involved in the
Graphic Processing Unit (GPU) programming for scientific applications. We begin
giving a rapid historical overview on how and why GPU entered the scene of High
Performance Computing (HPC). We then continue describing one of the available
frameworks for programming GPUs: the Compute Unified Device Architecture
(CUDA) developed and released by nVidia Corporation. We summarize the most
important new concepts of CUDA which are usually not present in single CPU
programming. In order to define the GPU programming limitations we give a
summary of the programmer-exposed hardware architecture whose knowledge is
necessary in order to optimize algorithm performances. We describe the two most
important resources: the computing cores and the memory hierarchy. Finally, we
discuss some lessons we learned with the programming practice. Most of the contents
can be found in [45].

2.1 Historical Introduction

The name ’Graphic Processing Units’ is rather recent but the use of coprocessors
for handling graphical tasks has a long history which originates in 1970s video
games. In these systems fast calculations for the graphic output are necessary for
enabling a real-time interaction between the machine and the user. Later on, graphic
coprocessors were produced for accelerating industrial drawing applications. In a
first stage only two-dimensional images could be processed and three-dimensional
projections capabilities were eventually introduced. Since the basic task is to compute
the colour of each pixel of the screen independently, the hardware naturally evolved
towards a many-core architecture where different cores with limited capabilities
could be used in parallel to accelerate the calculations.

Just ten years ago these coprocessors could be programmed through the OpenGL
Application Programming Interface (API). However, the programmer was forced
to use functions and pipelines which were designed for graphical purposes but
nonetheless there have been some successful attempts of using GPUs for Monte
Carlo (MC) Ising spin model simulations [46].
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A major leap forward has finally been taken in 2007 by nVidia when the new
Tesla architecture and the first version of CUDA were released: it was possible to use
GPUs for general purpose computing using a limited set of new instructions in the
C/C++ language. This step allowed the scientific community to access, in a much
easier way, the GPU computational resources. Indeed, many scientific problems can
be solved using algorithms that naturally expose an intrinsic parallelism. These
have greatly benefitted from the use of GPUs: considerable speed-ups, with respect
to usual CPU implementations, have been obtained in several applications with a
limited effort in the code porting. Most recent GPUs can remarkably sustain some
TFlops for single-precision computations. However, naive code porting still does not
allow to fully use the GPU capabilities. As we will describe in the Chapter 3 best
GPU performances must be sought with great care.

Finally, it is worth noticing that CUDA is not the only framework available for
programming on GPUs, nor nVidia is the only industry producing programmable
cards. There exist an open-source programming environment called OpenCL which
can execute programs on nVidia GPUs as well as on ATI graphic cards. However, we
won’t describe OpenCL. Nonetheless, our implementation strategies are completely
general and can be used in OpenCL.

2.2 CUDA programming model
Let us now review the basic programming concepts one has to handle in order to
successfully program on a GPU.

2.2.1 Threads

Through some programming language extensions it is possible to define special
functions, called kernel, to be run directly on the GPU. A given instance of the
kernel is handled by one thread. Threads are organized in a two-level hierarchy.

• thread blocks: a block is a set of Nb threads which can be organized in a
cubic lattice topology where each thread is identified by the triple of built-
in variables threadId.x, threadId.y and threadId.z. These variables are
read-only and can be accessed only within a kernel function. Different block
directions might have different limitations: the maximum number of threads
along the x or y directions, Nmax

b,x or Nmax
b,y , up to the latest architecture, differs

from that of the z direction Nmax
b,z 6= Nmax

b,x , Nmax
b,y . Moreover, the maximum

number of threads in a single block Nmax
b is different from the product of the

maximum number of threads for each direction: i.e.

Nmax
b 6= Nmax

b,x ×Nmax
b,y ×Nmax

b,z , (2.1)

so that one has to pay attention when defining the block size. The only case in
which different threads can communicate, without imposing a serialization of
the execution, is when they belong to the same block. Data can be exchanged
via a programmable cache which is called shared memory or via specific
instructions which are available for the latest architecture (i.e., warp shuffle
instructions).
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• block grid: the grid is a set of thread blocks which can be organized in a
cubic lattice topology where each block is identified by the triple of built-in
variables blockIdx.x, blockIdx.y and blockIdx.z. As we will discuss below,
the execution order of different blocks is not deterministic and it may change
at every kernel invocation. Also for the grid dimensions different limits in
the number of blocks apply according to the direction, so that the maximum
number of blocks on the x or y directions Nmax

g,x or Nmax
g,y differs from that

along the z direction Nmax
g,z .

The CUDA programming model is called SIMT (single instruction multiple
thread) and it is similar to the SIMD (single instruction multiple data) model. The
simplest case is that in which each thread executes the same set of instructions
on different data. The set of possible instructions which can be executed by a
single thread is almost the same as the usual CPU one with some differences: some
double-precision floating point operations do not comply with the IEEE-754 standard
and the possibility of recursion is available only for the latest cards and CUDA
versions.

In order to launch a kernel function one has to specify the grid configuration,
i.e., in the one-dimensional case for both blocks and grid, the number of threads
per block and the total number of blocks. Another important property of kernel
functions is that they are asynchronous: when a host thread launches a kernel
on the device the control of the flow immediately return to the host, so that it is
possible to overlap the execution of a kernel on the device to some different task
executed on the CPU. Of course, it is also possible for the host to wait for the kernel
execution to terminate.

Another interesting feature we will mention again in Chapter 3 are the so-called
CUDA streams using which it is possible to launch concurrently on the same device
more than one kernel. Assigning different tasks to different streams it is possible to
organize the device workload in such a way that a direct interaction with the host
is possible while keeping the device busy. We will leverage this feature in order to
implement the multi-GPU version of our code. Data transfer between the host and
the device can be performed both synchronously and asynchronously.

Now that we have a global view of the thread structure we can exemplify the
typical workflow as follows:

1. data structures are initialized on the host and copied on the device;

2. kernels are executed on the device;

3. the result of the execution is copied from the device to the host.

When writing a kernel the general strategy is to map the global thread index1 to
some array index so that each thread can load its own data onto which perform the
programmed calculations. Reading from array entries which are written to by other
threads generates a non deterministic behaviour since the thread execution order is
determined at runtime.

1The global kernel index for one dimensional blocks and grid reads thIndex = threadIdx.x +
blockIdx.x*blockDim.x.
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2.3 GPU architecture
Let us now discuss some essential details of the GPU architecture which are shared
by all GPUs. The threads execution we discussed in the previous section has a rather
complex mapping onto the actual hardware of the GPU. We present such a mapping
describing the two principal elements of a GPU, the streaming multiprocessors and
the memory hierarchy.

2.3.1 Streaming Multiprocessors

Each nVidia GPU, among other parts, is composed by one or more Streaming
Multiprocessors (SMs) which is the part of the card where the CUDA cores reside.
The number of cores Nc per SM varies with the hardware architecture, e.g., for the
Fermi architecture Nc = 32 while for the Kepler architecture Nc = 192. Each SM
has also two different caches: the L1/shared memory and the texture cache. The
number of available registers per SM, RSM , on which calculations are executed also
varies with the hardware architecture.

When a thread grid is instantiated each block is assigned to a given SM. Each SM
has a scheduler which divides the threads into groups of 32 which are called warps:
if the number of threads in a block is not a multiple of the warp the number of
instantiated warps is rounded to the next greater multiple directly by the hardware.
The warp is the basic execution unit of the SM. Each thread of a warp has its own
private registers, hence all the threads of a block have their own private registers.
Now, each thread of a warp executes the instructions on a given core which might
execute two different instructions at once, for certain operations, if the results are
independent. If the instructions present a data-dependent branching, i.e., an
if statement, the scheduler serializes the execution of the warp branches: this
means a great loss in performances. In the Chapter 3 we will see how to implement
the Metropolis MC dynamics without using if statements in order to avoid warp
branchings.

The SM has mainly two limitations which has to be satisfied at the same time:

1. there is a maximum number of thread blocks which can be run concurrently
Bmax;

2. there is a maximum number of threads that can be instantiated for each clock
cycle Tmax, hence a maximum number of warps Wmax.

Each kernel requires a certain number of registers Rth in order to be executed by a
thread, so that the total amount of registers that are needed by a one-dimensional
block is Rbl = RthNb,x. If the block size is such that the required register are more
than those physically present on the SM, i.e., Rbl > RSM , the kernel launch fails
since the private state of a block has to be entirely available on the SM registers at
any time. Another scenario might be one where just two blocks can be instantiated
at once per SM: this situation might give some trouble to the scheduler which could
optimize the performances shuffling the execution of more than two blocks on the
same SM. An opposite example might be that of a kernel using just a few registers
so that choosing small block sizes would lead to reach the maximum SM block
occupancy while underusing the available registers.
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These examples show that the block dimension is a crucial control parameter for
tuning the performances: there exist an optimal grid launch configuration which
may vary from GPU to GPU for the same data set.

It is possible to have a one-to-one mapping of the CUDA cores to the number of
single-precision floating-point units while this mapping is not possible for integer or
bitwise units which are less than CUDA cores. CUDA cores are also in charge of
the calculations of the physical memory addresses for memory loads and writes.

Each SM has a separated texture unit which is in charge of loading the read-only
memory regions, i.e., execute texture fetches, which are bound to a texture. The
texture memory physical addresses are not computed by CUDA cores.

At this point it is worth introducing a difference in the production of nVidia GPU
cards: a given card is tested during the production phase and according to the results
it is sold as a certified scientific-applications card, belonging to the Tesla series, or
as a gaming card, belonging to the GTX series2. Beside the certification for intense
computing usage of the Tesla cards, there are two important difference between the
scientific-application and the gaming cards: Tesla cards have the so-called Error-
correction code (ECC) which allows to determine whether there has been a data
corruption both in storage data and in the computation of physical addresses for
memory loads and writes; the GTX cards have a limited double-precision capability
(with the exception of the GTX Titan so far) which is completely enabled on Tesla
cards.

2.3.2 Memory hierarchy and caches

All data allocated in the GPU are stored in the Random Access Memory (RAM)
and are divided in three different categories:

• Global Memory data, which can be read or written by any thread;

• Constant Memory data, which are read-only;

• Texture Memory data, which are read-only.

All memory transactions from the RAM are served through an L2 cache whose size
is GPU-dependent. Now, this distinctions mainly relates to a difference in the use
of these memory regions:

• Global Memory is read and written through the SM L1/shared memory caches
and each transaction requested by a thread is served from the L2 cache in lines
of 128 Bytes. This means that, if threads in a warp request non-contiguous
Global Memory regions, more than one transaction, in the worst case 32,
are needed to serve the warp requests. When the memory request refer to
contiguous data, transactions are said to be coalesced and the bandwidth
is used in the most efficient way. An example is when all threads in a warp
request 32 contiguous integer values. Having a non-coalesced access-pattern
may turn into a sizeable loss in efficiency.

2Of course this is only a rough explanation of the process.
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• Constant Memory is served through a dedicate SM cache which streams the
requested values to all threads in the instantiated block. Hence, coalescing is
not requested.

• Texture Memory is served through another SM cache and transactions are
optimized on a two-dimensional data locality criterion. When the coalescing of
data cannot be achieved in the case of read-only data in Global Memory, the
use of texture fetches, i.e. texture memory reads, might give a sizeable gain.

We want to stress that arrays which belong to Texture Memory can still be modified
on the device if they are used as normal arrays. Any array can be read through the
texture cache when it is bound to a texture. On the contrary constant memory data
can only be modified by the host. As we will see in Chapter 3 we will alternatively
access to the spins as if they belong to the Global or to the Texture Memories.

Hence, the memory hierarchy is the following. At the lowest level there is the
RAM which is alternatively used as Global, Constant or Texture Memory. Each
request is served through the common L2 cache on the GPU level, and afterwards
through the L1/shared memory, constant or texture caches respectively, all belonging
to a single SM. At the highest level data are finally manipulated on the SM registers
and eventually stored back in the RAM, through the L2 cache.

Finally, one has always to remember that the memory requests are served with
a large latency, which is expected to be overlap with the algebraic computations
performed on the SM registers.

2.4 What practice taught us

So far, we gave a brief account of the basic features of GPUs which are, nonetheless,
important in order to obtain good performances. Indeed, when optimizing the code,
the only way to determine whether a given modification leads to an improvement or
not lies in a direct test: this is due to the fact that most of the workload management
is done directly by the SM schedulers. Moreover, some implementations may be
the best choice for one GPU and not for another one. Hence, it seems reasonable
to develop different implementations for the same problem in order to be able to
choose the best one according to the available hardware.

We want now to give some guidelines we used in the implementations we will
discuss in detail in Chapter 3 which we have learned from practice. Generally
speaking, algorithms can be classified as memory- or compute-bound depending on
how many algebraic operations per memory transaction are executed. In the first
case it is possible to leverage the very high memory bandwidth of the GPU, while
in the second case its computational capabilities. As an example the Metropolis
algorithm for the three-dimensional Edwards-Anderson model is memory-bound: we
need to perform 13 reads and 1 write to update one spin, while using only integer or
bitwise operations. We now present a general strategy which has turned to be useful
in such a case.
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2.4.1 Data layout in Global Memory

For memory-bound algorithms it is of utmost importance to optimize the data layout
in memory in order to suite in the best way possible the memory-access requirements
we discussed above. We list here some of the possible strategies.

• If the data structure is bipartite, e.g. square or cubic lattices of even size, it
is often more convenient to allocate two different arrays whereas in the usual
CPU case one single array is allocated.

• Whenever an array is only read during a kernel execution it is useful to bind it
to a texture in order to delegate to the dedicated texture hardware, rather than
to CUDA cores, the computations of the physical memory addresses. This
choice might also alleviate problems arising from non-coalesced data loads.

• Another strategy might involve a different ordering of the data structure
in order to alleviate the non-coalescence of memory loads because of some
boundary condition. A different data order might be useful to obtain a balanced
load of threads avoiding repeated thread divergences in different warps.

• Considering an array of three-dimensional coordinates data structures it is
better to allocate three different arrays so that threads can access them
sequentially.

• We will show in Chapter 3 that for lagged-Fibonacci-like pseudo-random
number generators it is better to access the state array in a strided way.

All these solutions share a common feature: to minimize the number of data
transactions needed for a warp to be ready to elaborate the loaded data. Hence, one
should look at usual data structure differently in order to find a new, more suitable,
layout.

2.4.2 Calligraphy

Surprisingly, most of these solutions are implemented at the kernel level just by tiny
modifications of the code. Under this point of view it seems that GPU optimizations
are a matter of calligraphy in writing the code. We will see a practical example in
the next chapter. This fact can be justified by the complexity of the GPU behaviour
which depends on a large number of different factors.
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Chapter 3

Edwards-Anderson model on
GPU

In this chapter we present a highly optimized implementation of a Monte Carlo
(MC) simulation for the three-dimensional Edwards-Anderson model with bimodal
disorder, i.e. the 3D Edwards-Anderson model running on CUDA enabled GPUs.
We begin with a review of the literature according to different criteria: the memory
allocation strategies, the nearest-neighbours access pattern, the chosen pseudo-
random number generator (PRNG) and the multi-GPU strategy. We then describe
a new memory access pattern for nearest neighbours on a cubic lattice which gives
a better memory alignment compared to previous implementations together with
new implementations for lagged-Fibonacci-like PRNGs, e.g. the Parisi-Rapuano
and the well-known Mersenne-Twister MT19937. Performance results will be given
concerning various metrics.

3.1 Introduction

Let us begin by writing once more the Hamiltonian of the three-dimensional Edwards-
Anderson model (EA3D)

H = −
∑
〈ik〉

Jik σiσk, (3.1)

where the σi ∈ {−1,+1} are the spin variables, the Jik ∈ {−1,+1} are the coupling
constants (representing quenched variables) which are randomly drawn according to
a given probability distribution P (Jik), and the sum

∑
〈ik〉 is restricted to nearest

neighbouring spins. Since we deal with bimodal disorder the probability distribution
reads

P (Jik) = 1
2 [δK(Jik − 1) + δK(Jik + 1)] , (3.2)

where δK(a − b) = δab stands for the Kroneker delta. Such a model describes, in
three dimensions, a disordered and frustrated magnetic system showing a glassy
dynamics below a finite critical temperature Tc = 1.1019(29) [31]. Because of a very
high critical exponent z = 6.86(16) [25] for the MC Metropolis dynamics, this model
has represented a long standing challenge for numerical simulations. For almost
thirty years special-purpose machines have been employed [26, 27, 28, 29] in order
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to get equilibrium measures for always larger systems. Large systems are needed
because of the severe finite-size corrections to scaling [39, 31]. Moreover, new kinds
of dynamics have been developed in order to reach equilibrium as fast as possible:
Parallel Tempering has proved to be the best choice so far [30].

However, the hegemony of special purpose hardware for this class of problems
might be about to end because of the widespread use of (multi) GPU devices,
enabling us to reach computational horsepower exceeding by orders of magnitude
those of common CPUs.

Since the very early use of CUDA, and even before [46], it has been understood
that MC simulations of Ising spin systems would have enjoyed benefits from the
use of GPUs. This is not surprising: for even cubic lattice sizes L = 2n the system
can be simply partitioned according to a checkerboard scheme into two coloured
subsystems, which we will refer to as reds and blues, which can be updated separately
since nearest neighbours of one colour belong to the other colour, i.e., a red spin
has blue nearest neighbours only. Hence, the problem has an intrinsic parallelism
which perfectly suits the GPU architecture: the update of each spin of a given color
does not require any coordination with the update process of other spins of the same
color so that the large amount of computing threads needed for the best use of the
GPU can be programmed to update concurrently independent spins of the system.

Using the Metropolis dynamics, the update of the entire system is performed
via two separate kernels, one for each colour. This is an easy way to enforce the
independence of the update of the two subsets, a necessary condition for a correct
implementation of the Markov chain. Of course, this kind of update does not ensure
detailed balance but stationarity holds nonetheless, which is enough to guarantee that
the system probability distribution converges to the equilibrium Gibbs distribution
[47, 48]

P ({σi}, β) = e−βH[{σi}]∑
{σi} e

−βH[{σi}]
. (3.3)

Now, we will review the previous works on spin systems for GPUs, taking into
account also different models and dimensionalities. We will analyze them according
to:

• memory-allocation strategies and spins-thread mappings;

• the kind and implementation of PRNGs;

• multi-GPU implementation techniques.

We can classify the previous works on spin systems according to the allocation and
the memory access strategies starting from the lowest level (Global Memory) up to
the highest level (Shared Memory and registers) of the memory hierarchy:

1. Global Memory allocation. Two different strategies are mainly used for the
memory allocation of spins in the GPU Global Memory: a first one uses a mixed
scheme where one array is allocated containing both colours in a cubic lattice
topology [49, 50, 51, 52, 53, 54]; a second one allocates two separate buffers
for the two colours breaking the cubic lattice topology [46, 55, 56, 57, 58].
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Though the first strategy seems to be more natural, one has to take into account
that memory transactions are served from the L2 cache in blocks of 128 bytes so
that for each transaction one loads both the to-be-changed spins and the nearest
neighbours which remain unchanged during the kernel execution. Different
threads will update different spins sharing some neighbours, thus rendering
the access pattern highly non-trivial. As a matter of fact, many of the works
adopting the first strategy use the Shared Memory to improve the locality of
such mixed access to the coloured spins [50, 51, 54, 53].

In the second case there are several benefits but also drawbacks. It is possible
to achieve good memory loading performances, since many threads look for
the same neighbouring spin allowing for a higher second hit probability in
L1/L2 caches. However, one has to deal with an algebraically demanding
access pattern due to the loss of the cubic topology: it is necessary to take
into account the parity of the lattice site in order to correctly determine the
right and left neighbours. Usually this strategy does not require the use of
Shared Memory as reported in [55, 56, 57, 58].

Other considerations are in order. Being the two colours allocated in two
different arrays, it is possible to bind each buffer to a texture in order to load
the neighbouring spins through the dedicated texture unit of each Streaming
Multi-processor (SM) with a separated cache different from the L1/Shared.
This choice offers a two-fold advantage: on one side, the slowing down due to
occasional non-coalescence of loads for nearest neighbours is softened because
texture fetches work on a memory locality principle, on the other side the
dedicated texture hardware is in charge of the computation of physical memory
addresses rather than CUDA cores. Using texture fetches for nearest neighbours
and couplings gives a sizeable gain of the order of 10-20%.

2. Spins arrangement in Global Memory. For both allocation strategies it
is still possible to choose several spins arrangements. Such a choice aims at
maximizing the loading efficiency from the Global Memory, i.e., reducing the
number of non-coalesced loads.

In case of a single buffer for both colours, two different strategies have been
proposed in [53] and [54]. In [53] the authors divide the cubic lattice in
sublattices linearly organized in memory in a “snake” fashion so that every
block taking charge of one sublattice could load more efficiently the spins
to the Shared Memory. As for [54], the authors studied a so-called shuffled
scheme where spins coming from different replicas where mixed saving memory
transactions. However they found that such a strategy performs worse than
the so-called unified one, where each array contains spins belonging to one
replica.

In the case of a separate allocation of colours, the authors of [55] proposed, for
the two-dimensional Potts model, a coordinate transformation of the lattice
that leads to have three of the four nearest neighbours lying sequentially in
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the array. The coordinate transformation reads{
x′ = (((x+ y)mod 2)L+ x)/2
y′ = y

3. Spins-threads correspondence. The mapping between spins and threads
can also be done in different ways.
Some of the works adopting the unified allocation scheme resort to (per-block)
Shared Memory [50, 51, 54]. In one of the most commonly used mappings each
thread-block evaluates the MC move on a sublattice [50, 51, 52, 53, 54] which
usually is a square in two dimensions or a cubic sublattice in three. Clearly,
with this strategy one needs to look for neighbours in the boundaries which will
also be retrieved by neighbouring blocks thus leading to a duplication of data
served by memory transactions. The most frequently used technique, in this
case, is loading in Shared Memory the neighbours and, if needed, the couplings.
However, this might represent a serious limitation since the number of thread
blocks running on a single Streaming Multiprocessor (SM) depends on the
amount of Shared Memory needed by each of them. In the case of models
with complex degrees of freedom only few blocks can be run concurrently thus
leading to under-use the SM.
A rather different, but apparently less effective, approach has been tried in
[49] where thread-blocks were associated to stripes of the cubic lattice of size
L× 2× 2. A thread-block is associated to each region and each thread updates
4 spins in the three-dimensional case.
As for the separated scheme there are no particular restrictions on the di-
mensionality of the thread blocks which can also be taken as one-dimensional.
Hence, no specific correspondence between blocks and lattice portions has to be
considered resulting in a more tunable and flexible scheme [56, 57, 58]. Indeed,
such a choice allows to decrease memory transfers redundancy. Moreover, as
shown in [56] and verified in the present work, it turns out that nearest neigh-
bours values are loaded in a more efficient way directly from global memory
making use of texture fetches, i.e. texture cache and hardware.

We continue our classification considering the choice of the PRNG which is one
of the most important aspects of a MC simulation. The reliability of the estimates
depends on the quality of the sequence generated by the chosen PRNG. As an
example, it is well known that the use of one single Linear Congruential PRNG
with a period p = 2k in equilibrium MC for the 2D Ising model leads to systematic
discrepancies on lattice sizes L = 2` due to resonance phenomena between the size
of the system and the systematic long range correlations which affect Congruential
PRNGs. It is then important to provide fast implementations for reliable PRNGs.
Nonetheless, many of the previous works on MC simulations of spin systems on
GPU used such PRNGs [46, 49, 51, 52, 56, 57, 58], mainly for benchmarking reasons.
The principal motivation is that the state of these PRNGs is limited to one integer
value making them the best choice in terms of speed but a questionable choice
as for the quality of the produced numbers. However, it is interesting to notice
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that in [51] compatible results with theoretical predictions for the two-dimensional
Ising model were reported. In the most straightforward implementation of Linear
Congruential PRNGs, each thread accesses its own memory location storing the
one-valued state of the generator so that one deals with a battery of generators
rather than a single one used to update the entire lattice. Little is known about the
behaviour of such parallelized implementations of Linear Congruential PRNGs and
it would be interesting to study them carefully.

In [55, 53] the authors used the so-called multiply-with-carry PRNG which
consists in a modified Linear Congruential PRNG where the result of the modulus
operation is used for the successive update, hence needing two integers to store the
state.

Otherwise in [54] the cuRand implementation of the XORWOW has been used.
This PRNG consists in a XOR-Shift summed to a Weyl generator.

There are a few other works using the so-called lagged-Fibonacci PRNG [59, 60]:
these generators use a state of a certain length from which two ‘lagged’ entries are
read and combined, usually summed, giving the random number and updating at the
same time the state. Usually, this kind of generators have very long periods, much
longer with respect to Linear Congruential PRNGs. As we are mainly interested
in the memory access scheme for the GPU implementation we can label as lagged-
Fibonacci-like all those PRNGs sharing a scattered read pattern of the state. Since
there are lags between the reads of the state, a certain amount of random numbers
can be produced in parallel by different threads [61, 62] using Shared Memory to
store the state which will be used in a thread block. One of the most popular
generators of this kind is the Mersenne Twister MT19937 [63] which has a very
long period p = 219937 − 1. However, since its state needs at least 624 entries, a
Shared Memory implementation would be too memory-consuming, thus strongly
limiting the SM occupancy. Hence in [64] the authors chose to use the so-called
Warp generator [61] which has been written along the same lines of MT19937.

To the best of our knowledge, there is only one work [60] using the so-called
Parisi-Rapuano generator [65] on a GPU. This generator basically consists in a
lagged-Fibonacci PRNG. It has been long known that the 32-bit version of the
Parisi-Rapuano cannot be safely used for sequential updating [66] and in [62] the
authors reported the failure of the Crush and Big Crush tests for that generator.
Indeed, in [60] the authors used the Parisi-Rapuano summed to a 64-bits congruential
generator as proposed in [66] and they showed that a battery of such combined
generators passes the Marsaglia tests [67], paying some care in the initialization
process. However, no details about the GPU implementation were reported. Indeed,
in [62] it has been observed that such a PRNG is not well suited for a Shared
Memory-based GPU implementation because of the lags values.

Finally, as for multi-GPU implementations we are only aware of [50, 58, 57]
which show stron scaling. Other works present weak scaling [60, 54] although in [60]
communication between different nodes is needed because of the adopted Parallel
Tempering implementation. However, the requirement of strong scaling depends on
the physical features of the simulated systems one is interested in.

Let us now discuss the solutions we found as for the implementation of optimized
access patterns for nearest neighbours in the cubic stencil and for lagged-Fibonacci-
like PRNGs.
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Figure 3.1. A depiction of the slicing procedure. Lighter cells are the periodic ones.

3.2 Cubic Stencil
With “Cubic Stencil” we refer to a set comprising one vertex of a cubic lattice
together with its six nearest neighbouring vertices and edges. It represents the set
of data needed to perform the update of a spin. It is also the fundamental data
element of many other algorithms based on the cubic lattice discretization, e.g. for
the solution of partial differential equations.

We now discuss the features of a new cubic stencil access pattern which we will
refer to as sliced. We store red and blue spins in two separate arrays of Global
Memory bound to two different textures. The novelty of the approach is in the spin
arrangement. Here, we analyze the three-dimensional case, however the approach
naturally extends to lower, i.e. two-dimensional, and higher dimensional cases. In
three dimensions, under the assumption of having periodic boundary conditions,
there exist a way of separating the colours while keeping the cubic lattice topology:
let us consider the cubic lattice starting from the origin of a Cartesian reference
frame where the coordinates take on integer values, hence ~x ∈ Z3; vertices belonging
to planes orthogonal to the direction ~n = (1,−1, 1) are all one-coloured. That is the
reason why we call this scheme sliced. With periodic boundary conditions, vertices
belonging to one slice will have all nearest neighbours either in the upper or in the
lower slice. Such a slicing procedure is depicted in Fig. 3.1, whereas in Fig. 3.2
the transformation from the usual spin arrangement is shown. Hence, one starts
from a three-dimensional checkerboard and ends up with a cubic lattice where each
horizontal plane is one-coloured.

It is easy to write down the transformation and its inverse given that the vertices
coordinates read ~x = (x, y, z) and the transformed coordinates read ~x′ = (x′, y′, z′)

x′ = x

y′ = y − x
z′ = x− y + z


x = x′

y = y′ + x′

z = z′ + y′
(3.4)

recognizing in the equation for z′ the expression of a plane orthogonal to the direction
~n = (1,−1, 1). The generalization to any number of dimensions for the vector ~n is
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Figure 3.2. Mapping from the separated allocation checkerboard scheme to the sliced one
for an L = 4 lattice. All four planes of the real lattice are involved in the definition of
the first plane. The procedure is iterated starting from the z = 1 plane taking the blue
diagonal: a blue slice is obtained for z′ = 1 and so on.

simply given by ni = (−1)i+1 so that in two dimensions one-coloured vertices lie
on lines orthogonal to ~n = (1,−1), and in four dimensions they lie on hyperplanes
orthogonal to ~n = (1,−1, 1,−1) and so on. Hence, as long as one deals with regular
(hyper)cubic lattices the scheme is completely general.

The transformed coordinates of nearest neighbours are:

~xspz = (x, y, z + 1) → ~x′spz = (x′, y′, z′ + 1)
~xsmy = (x, y − 1, z) → ~x′smy = (x′, y′ − 1, z′ + 1)
~xspx = (x+ 1, y, z) → ~x′spx = (x′ + 1, y′ − 1, z′ + 1)

~xsmz = (x, y, z − 1) → ~x′smz = (x′, y′, z′ − 1)
~xspy = (x, y + 1, z) → ~x′spy = (x′, y′ + 1, z′ − 1)
~xsmx = (x− 1, y, z) → ~x′smx = (x′ − 1, y′ + 1, z′ − 1)

(3.5)

where the labels spz, . . . are self-explaining1. The order of the new coordinates
1The induced modification in the kernel is tiny: this is an example of the calligraphy concept we

talked about at the end of Chapter 2
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Figure 3.3. Cubic stencil for the real lattice (left) and for the transformed lattice (right).

makes apparent that for the calculations of, say, ~x′spz can be reused for ~x′smy and
~x′spx, hence one can write

~x′spx = î′(x′ + 1) + ~x′smy = î′(x′ + 1) + ĵ′(y′ − 1) + ~x′spz, (3.6)

where î′, ĵ′ and k̂′ are the unit basis vector for the x′, y′ and z′ direction respectively.
This feature gives some advantage in terms of calculations for the memory accesses,
and it does not hold for the usual expressions. Thus, the cubic stencil layout in both
set of coordinates looks as in Fig. 3.3, and periodic boundary conditions apply also
to the new coordinates.

Memory transactions for bulk spins are completely coalesced with some per-warp
redundancy for smy/spx and spy/smx which is completely handled by the hardware.
The new layout naturally shows a two-dimensional locality of data. Indeed, such a
remapping is in the same spirit as the one proposed in [55], with the difference that
being this approach geometric it can be extended to other dimensionalities as shown
above.

After having explained the memory arrangement we finally explain the spins-
threads mappings. Some general remarks are in order:

• we simulate four replicas at once, systems with the same quenched disorder
but different initial conditions and evolutions, which are stored in different
arrays. Such a choice is a common practice [31]. However, the extension to an
arbitrary number of replicas is trivial just requiring to handle a new stride in
the kernels.

• colours and couplings are bound to textures in order to delegate addresses
calculations to the texture hardware rather than to CUDA cores. Indeed one
colour is constant while updating the other.

• for the sliced scheme, since the arrays are separated, one does not really need
to consider z′ as running from 0 to L− 1, but rather from 0 to L/2− 1. Let us
assign the same z′ label to pairs of differently coloured x′ − y′ planes starting
from the bottom with red vertices. The blue spz of a red vertex i has its same
index, i.e. spz = i, whereas the blue vertex j will have its bottom red spin at
smz = j. This scheme further simplifies calculations.
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• Currently, physically interesting behaviour of the EA3D model can be studied
only for relatively small sizes, hence we should try to saturate the GPU
resources also for small-size lattices. The easiest way to achieve this goal is to
simulate different coded disorder realizations numbered by k. Thus, the stride
separating in the spins arrays different coded samples is L3/2 = V/2.
As far as we know only in [54, 60] such a technique has been adopted and
indeed it is possible to sustain almost stable performances while varying the
linear size L. We reserve the y, z block grid dimension as disorder index, which
seems a reasonable choice since gridDim.y,z < 65536.

• couplings are indexed as if they were red vertices and they are allocated in
six different arrays Jpx, Jpy, Jpz, Jmx, Jmy, Jmz. This choice introduces
an asymmetry in the kernels which can easily be fixed by allocating a copy
of the couplings suitably transformed in order to be indexed as blue vertices.
However, we do not show the results since the difference in the performances
of the two updating kernels is negligible.

We implemented two different ways of mapping the vertices index to the threads
index:

1. a one-dimensional mapping that associates s vertices to a single thread. By
tuning s is possible to find the best performance. Though, one needs to
compute two divisions and two modulus operations in order to calculate
nearest neighbours indices.

2. a multi-dimensional mapping exploiting the grid algebra provided by the GPU
which allows to avoid divisions and modulus operations at the price of a more
rigid choice for the total number of threads. The corresponding Kernels are
tagged as Grid.

The kernel launch parameters for the first case are defined as follows

dim3 block(blockSize,1,1);

int fitGrid = (V/2/s + blockSize - 1)/blockSize;

dim3 grid(fitGrid, k, 1);

where s = s is the number of spins per thread and blockSize = 32n, i.e. a multiple
of the warp size. For Grid kernels the launch parameters are

dim3 blockG(L, l, 1);

dim3 gridG(A/(blockG.x*blockG.y), L/2, k);

where A=L*L and l is the number of lines of a single plane updated by a thread
block. We highlight that for the latter case we use threadIdx.x, threadIdx.y and
blockIdx.y as x, y and z indices respectively. For stantard-Grid kernels one has

dim3 blockG(L/2, l, 1);

dim3 gridG(A/(blockG.x*blockG.y)/2, L/2, k);
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The nearest neighbours indices are always calculated from the one-dimensional
index of the spin that is updated. Here we report the calculation which are the same
for the sliced and sliced-Grid kernels in order to be as clear as possible

int smz = i + (SM(z - 1, d_hL) - z)*d_A;

int spy = smz + (SP(y + 1, d_L) - y)*d_L;

int smy = i + (SM(y - 1, d_L) - y)*d_L;

int smy = i + (SM(y - 1, d_L) - y)*d_L;

int smx = spy - x + SM(x - 1, d_L);

int spx = smy - x + SP(x + 1, d_L);

where i = kk + off, begin kk < V/2 and off = blockId.y,z*d_hV a disorder
offset (with d_hV = V/2). We have implicitly set spz = i. In order to avoid the
modulus operation enforcing the periodic boundary conditions we defined the macros
SM and SP which read

#define SP(a, m) (a&(˜ (-(a >= m))))

#define SM(a, m) (a+((-(a < 0))&m))

Let us briefly comment the definition of SP: if a >= m evaluates to 1 then

(˜ (-(a >= m))) = 0x00000000

i.e. all bits set to zero, otherwise one has

(˜ (-(a >= m))) = 0xffffffff

i.e. all bits set to one. The macro SM is completely analogous. Hence we have
reproduced the periodic boundary conditions since SP(m + 1, m) = 0 and SM(-1,
m) = m - 1.

We remark that we had to define another macro SMM for the Grid version in order
to handle the fact that threadIdx and blockIdx variables are unsigned integers.

We tested the new access scheme comparing it with an implementation of the
classic checkerboard spins arrangement, which we will refer to as standard, and
with another scheme [56] using mainly bitwise operations, which however works only
in the case L = 2`. We will refer to this last implementation as bitwise.

We also wrote the Grid version of the standard scheme so that we end up with
five different kinds of kernels: bitwise, standard, standard-Grid, sliced, sliced-Grid.

3.3 Pseudo-Random Numbers Generators
We chose to implement as a baseline the so-called Lehmer-Park-Miller MINSTD
Linear Congruential PRNG which is defined as

Rn+1 = (16807Rn)mod(231 − 1). (3.7)

Its period is a prime number, more precisely a Mersenne prime M31 = 231 − 1. This
generator can be used for the coupling values Jik and it is also a reasonable choice
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for the critical off-equilibrium relaxation dynamics under the hypothesis of a number
of simulation steps not larger than the period.

One difficulty comes with the implementation of the module which cannot be
carried out by hardware truncation, so that we need to directly handle the overflow
due to the multiplication and then take the module. This can be done by means of
a swap 64-bit variable or by means of 32-bit variables only as proposed by Carta in
[68, 69]. The latter solution does not require the module operation. We followed the
implementation proposed in [69] but we substituted the conditional statements with
bitwise operations to avoid warp branchings.

However, since we plan to extend this MC implementation to the equilibrium
regime we also developed a GPU version of the Parisi-Rapuano PRNG [65] which
is mostly used in the spin glass community. keeping in mind that one would also
need to sum such a generator to a congruential one in order to obtain reliable
random numbers for long parallel sequences [66, 60]. The Parisi-Rapuano is a
lagged-Fibonacci-like PRNG with a minimal state of 62 words. One instance of the
generator reads

ira[i] = ira[i - 24] + ira[i - 55];

R = ira[i]ˆ ira[i - 61];

where ira denotes the state array and R is the new random number. A common
approach [70, 62] consists in exploiting the lags and let the threads in a block share
one or more states which can be concurrently updated storing them in Shared
Memory. However lags as those of the Parisi-Rapuano PRNG are not well-suited for
this scheme [62].

Hence, we propose a new simple alternative: allocate an array of Nthreads×Nstate

entries and let each thread access it with its own global grid index and load the lagged
entries just using a stride, i.e. the number of threads. Thus, defining d_threads as
the number of threads and globalId as the thread global grid index, a sketch of
the kernel implementation simply reads

swap = ira[(i - 24)*d_threads + globalId]

+ ira[(i - 55)*d_threads + globalId];

R = swapˆ ira[(i - 61)*d_threads + blobalId];

ira[i*d_threads + globalId] = swap;

although in a real implementation one has to take into account the periodic conditions
for the access to the state. This can be easily obtained through the SP macro we
defined before, thus avoiding modulus operations.

In order to show the validity of this scheme we chose to implement the much
known Mersenne Twister MT19937 and compare its performance to that of the
cuRand MTGP32 which is a modified version of the Mersenne Twister. Because
of the adopted implementation in which one state is shared in a thread block the
device API version requires the block size to be no larger that 256. We can also
directly compare it to the cuRand host API version of MT19937 which is available
for CUDA 6.0, only for devices of compute capability equal to or higher than 3.5.

We want to stress that our implementation does not share any of these restrictions.
For the host API comparison we use the criterion proposed in [71]. Nonetheless, we
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Tesla M2090 Tesla K20X GTX Titan
PRNG tINIT (s) tGEN(s) tTOT (s) tINIT (s) tGEN(s) tTOT (s) tINIT (s) tGEN(s) tTOT (s)

cuRand MTGP32 0.09 12.34 12.43 0.12 13.46 13.58 0.21 10.11 10.32
cuRand XORWOW 0.01 2.91 2.92 0.01 2.90 2.91 0.01 2.31 2.32
cuRand MT19937 0 0 0 0 0 0 0.01 3.23 3.24
MT19937 3.86 6.40 10.26 4.63 6.12 10.75 3.92 4.66 8.58
Parisi-Rapuano 0.40 8.17 8.57 0.45 5.87 6.32 0.41 4.18 4.59
MINSTD 0.01 1.72 1.73 0.01 1.34 1.35 0.01 1.13 1.14

Table 3.1. PRAND benchmark [71] results using cuRand host API. The task consists
in filling an array of 229 single-precision floating point variables. In the upper half
of the table cuRand library results are reported while in the lower half those of our
implementations. Two different measures are reported: tINIT is the time needed to
initialize the PRNG; tGEN is the generation time. For the M2090 ECC is off, while for
K20x ECC is on.

PRNG M2090 K20X GTX Titan GTX 680

cuRand MTGP32 4.5 · 109 3.9 · 109 5.2 · 109 5.1 · 109

cuRand XORWOW 2.9 · 1010 7.6 · 1010 10.7 · 1010 6.1 · 1010

MT19937 10.1 · 109 10.7 · 109 14.1 · 109 9.6 · 109

Parisi-Rapuano 9.4 · 109 12.5 · 109 16.8 · 109 8.3 · 109

MINSTD 4.1 · 1010 7.6 · 1010 8.9 · 1010 6.7 · 1010

Table 3.2. Device API test. Number of instances per second. The launch configuration is
the following: 64 blocks of 256 threads, each thread producing 215 instances, repeated
10 times. For the M2090 ECC is off, while for K20x ECC is on.

propose as standard benchmark for a PRNG its kernel version counting the fraction
of odd numbers (just as the example reported in the cuRand manual [72]). Such a
benchmark should be more suitable for kernel-use PRNGs.

Results are reported in Table 3.1 for the PRAND test, and in Table 3.2 for the
device API test. Tests were run on GTX 680, GTX Titan, Tesla M2090 and Tesla
K20x GPUs. Looking at Table 3.1, where we report the execution times for filling an
array of 229 single-precision floating point variables, we see that our implementation
of MT19937 runs roughly twice as fast as the cuRAND MTGP32 implementation.
We could only test the most recent Host API cuRAND implementation of the
MT19937 on the GTX Titan and not on the K20x (the M2090 is ruled out being
too old), and our implementation performs 44% slower than cuRAND. The large
tINIT values for our implementation are due to the fact that the seed are read from
the system random pool, slowing down the process. It is clearly possible to reduce
those times implementing some initialization algorithms as those proposed in [73].
In Table 3.2 the metric is changed to the number of PRNG instances per second.
The trends are qualitatively the same although our implementation of the MT19937
on the GTX Titan runs almost three times faster than the cuRAND MTGP32.

However, such benchmarks only give a qualitative comparison of different PRNGs.
As we will see one should always compare different PRNGs in a given real-life
implementation.
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3.4 Asynchronous Multispin Coding

Multispin coding techniques are rooted in lattice gauge theory simulations [74]. They
have been employed later in Ising models simulations [75, 76, 77, 78]. The search
for a close packing of data was motivated by the limited memory resources of that
time, and by the intrinsic bit-level parallelism which can be obtained through bitwise
operations. Indeed, since the quantities involved in the simulations are two-valued,
i.e. σi ∈ {−1,+1} and Jik ∈ {−1,+1}, the optimal solution is to store couplings
and spins in single bits rather than use a single byte, e.g. using a char.

Multispin coding comes in two different flavours:

• synchronous multispin coding (SMSC) consisting in storing in one word spins
belonging to one single system, usually aligned along one specific direction.
This allows to get faster simulations in terms of wall-clock time compared to
a simple one-variable-one-spin setting. Indeed, such a technique is used in
the Janus supercomputer [28] for reaching thermal equilibrium. Clearly, the
update of each bit-spin requires one instance of the PRNG;

• asynchronous multispin coding (AMSC) consists in storing spins belonging
to different systems, located at the same vertex, in the same word. The
total wall-clock time does not decrease, but it is possible to update all spins
contained in a word with only one instance of the PRNG at the cost of the
introduction of a certain amount of correlation, which can be taken care of
easily.

We chose to implement the AMSC because we were interested in the off-
equilibrium critical relaxation regime, hence being able to simulate a large number
of samples is preferable over obtaining a long simulation time. The AMSC for spin
systems was clearly explained in [78] where each system was considered to be at a
different temperature. We are aware of some AMSC implementations on GPU: [50]
for the 2D Ising model and [54] for the EA3D model with external field. In particular
in [54] the proposed AMSC technique stores in one word spins of the same system, i.e.
with the same couplings, which are evolved at different temperatures. This scheme
has been adopted for implementing the PT dynamics. Transition probabilities are
stored in a look-up table indexed by the energy difference ∆E of the proposed flip
and the spin direction (with respect to an external magnetic field). Hence, the swap
of two temperature-replicas simply requires to swap two lines in the look-up table.
However, in order to speed up the access to the look-up table, some space in the
spins words is reserved so that not all bits of a word codify for a spin. We will see
that for non-PT dynamics this represents a bottle-neck for memory use efficiency.
Again, each spin update is served by one PRNG instance.

As we anticipated, we associate to each spin a different disorder realization, thus
only one PRNG instance is needed for all spins contained in a word. Considering
the contribution to the Hamiltonian due to a single cubic stencil, it is clear that the
possible energy differences after a proposed spin flip on σa are

∆E = H[{σi 6=a,−σa}]−H[{σi 6=a, σa}] = −12,−8,−4, 0, 4, 8, 12. (3.8)
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The Metropolis dynamics is defined by the acceptance probability

Pflip(∆E) =
{

1, ∆E ≤ 0
e−β∆E , ∆E > 0

(3.9)

where β = T−1 is the inverse temperature. The value of Pflip(∆E > 0) has to be
compared to a flat-distributed random number r ∈ [0, 1] so that if r < Pflip(∆E > 0)
the proposed flip is accepted otherwise it is rejected. However, since PRNGs are
defined for integers, one does not really need to use a normalized r. The most direct
way is to multiply the transition probability for the value of the biggest random
number Rmax and compare it with the PRNG instance R, i.e. R ≶ Rmax exp(−β∆E).
We label the non-trivial normalized transition probabilities as Rmax exp(−β∆E) =
EXP12, EXP8, EXP4. We employ the following mapping of spins and couplings to bits

Jik = −1 → Jik=1, σi = −1 → si=0,

Jik = +1 → Jik=0, σi = +1 → si=1.
(3.10)

The value of the interaction energy with one of the nearest neighbours is then
converted for each bit as

−Jik σi σk = −1 → eik = Jikˆsiˆsk = 0,

−Jik σi σk = +1 → eik = Jikˆsiˆsk = 1.
(3.11)

If we sum the six energy variables per stencil eik we obtain a three bits result∑
k

eik = (sum2, sum1, sum0) = 22 × sum2 + 2× sum1 + sum0, (3.12)

which directly maps to the seven possible values of ∆E since flipping the spin leads
to flip the partial values eik.

(0, 0, 0) = 0 → ∆E = −12
(0, 0, 1) = 1 → ∆E = −8
(0, 1, 0) = 2 → ∆E = −4
(0, 1, 1) = 3 → ∆E = 0

(1, 0, 0) = 4 → ∆E = 4
(1, 0, 1) = 5 → ∆E = 8
(1, 1, 0) = 6 → ∆E = 12

(3.13)

Now, the aim is to define a mask in order to flip the right spins with a XOR
operation

spin = spinˆmask; (3.14)

As a first step we compare the random number R with the non-trivial transition
probabilities defining the variables

cond12 = -(R < EXP12);

cond8 = -(R < EXP8);

cond4 = -(R < EXP4);

(3.15)

i.e. if R < EXP4 then cond4 = 0xffffffff (all bits to one), while if R > EXP4 then
cond4 = 0x00000000 (all bits to zero). Clearly, if cond12 = 0xffffffff, i.e. the
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most improbable flip can be accepted, then all spins must be flipped. Also all spins
with sum2 = 0 must be flipped so that we write

mask = cond12 | (˜sum2); (3.16)

where the | stands for the logic OR operator. We still need to handle the two
remaining non-trivial cases corresponding to ∆E = 4, 8. A first selection is obtained
using sum2 as a mask, although we still need to discard the case ∆E = 12, hence
we write sum2 & (sum2 ˆ sum1). The flipping condition for the cases ∆E = 4, 8,
when R < EXP8, simply reads (sum2 & (sum2 ˆ sum1)) & cond8. The last step is
to consider ∆E = 4 when R < EXP4 which leads to (sum2 & (sum2 ˆ sum1)) &
(cond8 | (cond4 & (˜sum0)). All in all the mask reads

mask = cond12 | (˜sum2)

| ((sum2 & (sum2ˆsum1)) & (cond8 | (cond4 & (˜sum0))));
(3.17)

This expression has the same number of bitwise operations of the natural extension
of [78].

3.4.1 Results

We present now the results concerning the performances of the different GPU
implementations which are labeled as sliced, standard and bitwise. The sliced
one uses the sliced checkerboard scheme we propose in this work, whereas the
standard and bitwise implementations are based on the usual checkerboard scheme
with the difference that the last one only works for linear sizes which are powers of
two, L = 2` and the calculations are implemented mainly through bitwise operations.
We checked that all these schemes give the same bit-to-bit results so that they are
completely equivalent2.

Before discussing the results let us define the principal metric we will use in
order to measure performances: the pico-second-spin-flip psFlipn,x that is how many
pico-seconds are needed in order to reject or accept a proposed spin-flip. Here n
stands for the number of GPUs and ‘x’ for the used PRNG. The mathematical
definition is the following

psFlipn,x(L, k) = tsw · n ·
(
32 · k · 4 · L3

)−1
, (3.18)

where 32 ·k is the number of different disorder realizations (32 multispin-coded times
k different codings), 4 is the number of simulated replicas, and tsw is the wall-clock
time needed to perform one sweep, i.e. update red and blue spins, for all disorder
realizations. Indeed, tsw is always measured on a single node. Data were taken for
four different GPUs: GTX 680, GTX Titan, Tesla M2090 and Tesla K20x.

Let us begin by analyzing a behaviour which has been seldomly explored in the
past literature: how to saturate the GPU resources for small lattices. The solution
we adopted, as others did [54, 60], is to allocate at the same time different systems.
As it is shown in Fig.3.4, in the case of L = 8, tsw is almost constant up to k = 64

2Precisely, the bitwise check between the sliced and the other implementations requires to remap
all random numbers after one of the two colours has been updated.
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Figure 3.4. Values for tsw and psFlip1,mstd, i.e. the number of pico-seconds needed to
accept or refuse a flip proposal with the MINSTD PRNG, as a function of the number
of coded systems k for a GTX Titan. Data refer to the best performances at varying
grid launch parameters for a given value of k for different sizes L.

which means that simulating one or 64 coded systems has the same cost for the
GPU. This means that a factor 64 can be gained for free. Indeed, this observation is
important since the accessible physics for the EA3D is still confined to relatively
small lattices, hence obtaining the best result also for L ≤ 32 is crucial. We notice
that even though, for k > 64, tsw starts to increase, a linear regime is attained only
for k ≥ 4096 in the case L = 8. Indeed, the case L = 32 saturates the GPU almost
at the beginning and the metric psFlip1,mstd only evolves from 4 psFlip to 3 psFlip,
which however is a ∼ 25% gain.

Now, in order to make a fair comparison with Janus FPGA hardware [79, 29],
it is important to stress that those machines sustain comparable performances in
terms of pico-seconds-spin-flip (16 psFlip for Janus and 3-5 psFlip for Janus II)
for a single sample also for small lattice sizes. In our case we need to simulate
several samples to saturate the GPU resources. Hence, Janus and Janus II are the
fastest solution in terms of wall-clock time to bring a single sample to equilibrium
and for small lattice sizes GPUs are still far away. A direct comparison with Janus
supercomputers can be only performed when a single system is large enough to
saturate the GPU resources. However, the game is subtle since saturation is attained
only for large sizes which might be out of the domain of physical interest, at least
for equilibrium simulations.

In Figures 3.5 and 3.6 we report benchmarks results for different GPUs and
different algorithms on all even lattice size in the range 8 ≤ L ≤ 256 . They all share
the MINSTD as PRNG. Benchmarks were performed measuring the sweep wall-clock
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Figure 3.5. Best performances for psFlip1,mstd. The red empty squares refer to the sliced
implementation, the light-green filled circles refer to the standard implementation while
the blue empty circles to the bitwise one. The value of Lthr is larger for the GTX Titan
and Tesla M2090.

time tsw while varying L, k and the grid configuration for the kernel, in order to
find the best configuration for each lattice size, i.e. only the best configurations
times are reported. There are some qualitative features which are shared by the
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Figure 3.6. Best performances for psFlip1,mstd for Grid implementations. The red empty
squares refer to the sliced-Grid implementation and the light-green filled circles refer
to the standard-Grid implementation.

different GPUs

• the best performances are obtained in the first range of lattice sizes L < Lthr,
where the threshold Lthr varies according to the GPU and the algorithm,
assuming larger values for latest GPUs; Lthr is defined as the first value of L
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for which psFlip1,mstd begins to grow significantly;

• the sliced scheme performances get worse always before those of the standard
scheme do;

• the sliced scheme gives always the best performance for L > Lthr;

• we split the data in two different branches defined by two subsequences of the
lattice size L0 = 4m (faster) and L1 = 2(2m+ 1) (slower), which converge for
L > Lthr, and this splitting is most evident for small lattice sizes.

We want to stress that it is the first time, in our knowledge, that results are reported
in such a wide range of lattice sizes with such a stability in performances.

The sliced scheme worsen before the standard does probably because the latter
deals with boundary conditions on the y-axis only after L2/2 elements have been
processed whereas for the sliced scheme the boundary conditions on the y′-axis are
treated after L2 elements. Hence, a cache hit for the standard scheme is more likely.
It appears that the behaviour of the GPU memory is somehow correlated to the
number of memory requests for the periodic boundaries. As a matter of fact, the
following scaling relation Lstandardthr ∼

√
2Lslicedthr roughly holds.

Data related to the standard-Grid and sliced-Grid implementations are clearly
less stable. We notice that the standard-Grid implementation performs much worse
than the sliced-grid. This should be related to the fact that the block size is fixed to
the number of one-coloured spins in a z slice, which means for the standard-Grid
scheme L2/2, starting from 32 threads, and for the sliced-Grid L2, starting from 64
threads. Hence, having blocks which coincide with a warp does not seem to be an
optimal choice for the GPU. Looking at the data for the Tesla M2090 in figure 3.6
there is a modulation as a function of the lattice size with a period ∆L = 32. We
notice that for such values of L the blocks are always multiple of a warp.

The ‘Grid’ algorithms perform slower than the others in the examined range so
that we can safely discard this implementation choice which relies on the inherent
algebra of the thread-grid indices. Hence, we will focus hereafter mainly on the
non-grid implementations.

In Fig.3.7 we report the optimal values of the number of coded systems k as a
function of the lattice size which we can see decreases roughly in a power-law fashion.
In particular we also show the ratio between the number of branching warps and k:
for lattices belonging to the subsequence L1 = 2(2m+ 1) this ratio is always equal
to one, whereas for the subsequence L0 = 4m it is always equal to zero. This result
is explained by the fact that half of the volume of a lattice Vi/2 = L3

i /2, i.e. all the
one-coloured spin, is always a multiple of the warp size for the even subsequence
V0/2 ∝ 32 whereas it is not so for the odd subsequence V1/2,

V0
2 = (4m)3

2 = 32m3,
V1
2 = [2(2m+ 1)]3

2 = 4(2m+ 1)3. (3.19)

In order to prove this let us look if there exist a value of m for which V1/2 is a
multiple of the warp size

V1
2 = 4(2m+ 1)3 = 32n, 2m+ 1 = 2n1/3, m = n1/3 + 1

2 , (3.20)
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which has integer solutions for m for non-integer n. Since we are looking for integer
values of n this proves the previous assertion. Hence, the subsequence of cubic
lattices of linear size L1 is intrinsically uncommensurate to the actual warp size
which is characteristic of the CUDA framework. Thus, as long as the warp size is
fixed to the actual value, there will always be warp branchings for checkerboard
algorithms updating one colour at the time. Indeed, this result is correlated to the
fact that the two subsequences L0 and L1 have different performances, but does not
provide a full explanation.

1

101

102

103

104

k

0

1

8 32 64 96 128 160 192 224 256

b
ra
n
ch
/k

L

Figure 3.7. Upper panel: best values of k for the GTX 680. The red empty squares
refer to the sliced implementation, the light-green filled circles refer to the standard
implementation while the blue empty circles to the bitwise one. Lower panel: number
of branched warps divided by k: for the sliced and the standard implementations the
subsequence L1 = 2(2m+ 1) has a divergent warp for each system.

To complete the analysis for the best performances, we report in Fig. 3.8 the
results for the bandwidths measures for the best launch configurations. Except
for the Tesla M2090 the sliced and the standard algorithms saturate the available
bandwidth in the entire range with some fluctuations.

Let us now examine the results for different PRNGs: our implementations of
the Parisi-Rapuano and the usual Mersenne Twister MT19937, together with the
cuRand XORWOW (which is the standard cuRand PRNG) and MTGP32 which
is a reduced version of the MT19937. While for the first three PRNGs we could
perform full benchmarks with the only limitation of the memory usage, for the
MTGP32 we could use a maximum number of 200 blocks and a maximum blocks
size of 256 threads. As for the number of blocks, this is a limitation of the standard
usage which, however, can be by-passed with some effort as reported in the cuRand
documentation [80].



3.4 Asynchronous Multispin Coding 47

90

105

120

135

Tesla M2090

100

125

150

B
an

d
w
id
th

(G
B
/s
)

GTX 680

190

200

210

220

8 32 64 96 128 160 192 224 256

L

GTX Titan

Figure 3.8. Data for the GTX 680 and GTX Titan GPUs. The red empty squares
refer to the sliced implementation, the light-green filled circles refer to the standard
implementation while the blue empty circles to the bitwise one. The horizontal lines
are the peak bandwidths.

Results are reported in Fig. 3.9: in the upper panel we show the values of
psFlip1,x normalized to the MINSTD performances psFlip1,mstd, which we use as a
baseline, for the three different algorithm implementations. In psFlip1,x, ‘x’ labels
three different PRNGs: Parisi-Rapuano, MT19937 and XORWOW. All data refer to
the GTX Titan GPU. It is clear that the lowest ratio for the XORWOW is obtained
for the sliced implementation for which it is ∼ 2 whereas for the standard and bitwise
versions the ratio is ∼ 3. The Parisi-Rapuano and the MT19937 have roughly the
same ratio for the three different algorithms.

In the lower panel of Fig. 3.9 we report the absolute values for psFlip1,x. it is
possible to see that the performances for our implementations of the Parisi-Rapuano
and MT19937 and of cuRand MTGP32 weakly depend on the chosen algorithm, while
there is a considerable difference for the XORWOW for which psFlip1,xor ∼ 6ps for
the sliced scheme while psFlip1,xor ∼ 9ps for the sliced and bitwise implementations.
There are two main results emerging from the data:

• the standard cuRAND XORWOW performs slower than our best-quality
PRNG, the MT19937;

• the sliced scheme is more robust with respect to a change in the memory
bandwidth load.

The first point can be easily understood by considering that the data structure of
the cuRand XORWOW PRNG has a size of 48 bytes: each 128 byte transaction,
which is served from the L2 cache, only loads the data needed by two threads, so
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Figure 3.9. Top panel: psFlip1,x normalized to the MINSTD are shown. Bottom panel:
the absolute performance is reported where the red squares represent the sliced scheme
data, the filled green circles and the empty blue circles those of the standard and bitwise
schemes respectively. All data refer to the GTX Titan.

that we need roughly 16 memory transactions for a warp to be ready, whereas in our
approach we only need O(1) memory transactions, e.g. 3 for the Parisi-Rapuano
and the MT19937. Indeed, also the MTGP32 follows a similar pattern in that every
thread in a warp loads in the shared memory one entry of the state. The strategy
used for the XORWOW implementation is not adequate for intense memory usage
algorithms.

As for the second point this should be a proof that the memory alignment given
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by the sliced scheme is better suited for second hits in the caches: indeed the amount
of needed data transfers is the same for the three schemes in the XORWOW case
but for the sliced scheme there is a ∼ 33% gain with respect to the standard and
bitwise schemes.

As a final remark, the MTGP32 performs from 3 to 5 times worse than the
MINSTD implementation. We stress that this result is strongly influenced by some
limitations of the cuRand implementation which, however, can be softened with
some further work.

3.5 Multi-GPU Implementation

As far as we know, there are just a few works showing strong scaling results
for spin systems [50, 57, 58]. We chose to adopt the same technique proposed
in [57, 58] where the partitioning is performed along the z′-axis of the system.
All communications among nodes are handled by MPI and the overlap between
calculations and communications is achieved by using CUDA streams. We maintain
the single-GPU version flexibility for a customary number of spins per thread
and coded systems k. A priori, it should not be taken for granted that the bulk
update, executed on one CUDA stream, can mask the boundary update and data
copy/transfer, executed on the other stream, since the algebraic intensity of the
algorithm is rather low.

Stream 0

Stream 1

Boundary MPI

t

D2H H2D

Bulk

Figure 3.10. Scheme representing the multi-GPU strategy leveraging CUDA streams.
Here ‘Boundary’ and ‘Bulk’ represent two kernels launched on the same GPU. After
the boundary update on the stream 0 an asynchronous ‘D2H’ device-to-host copy of
the only one-coloured boundary is performed, then ‘MPI’ handles the one-directional
boundary exchange between nodes and an asynchronous ‘H2D’ host-to-device memory
copy updates the boundary spins.

The multi-GPU version of the sliced Kernel is rather different from the one using
the standard checkerboard scheme [57, 58] since the disposition of colours in the
cubic lattice is different. At fixed z′ value spins are one-coloured so that for every
partition of the system the lowermost plane is always red whereas the highermost
one is always blue. This means that when updating red spins the only boundary
coincides with the lowermost red plane or with the highermost when updating the
blue spins. Hence, the communication between the nodes goes in the downward
direction for red spins and in the upward one for the blue spins: there is no need
for all nodes to communicate with all nearest neighbours after a colour update.
To-be-sent boundary spins are stored in the bulk array and copied to an auxiliary



50 3. Edwards-Anderson model on GPU

buffer by the same kernel that performs the update. To-be-received boundary spins
are stored in a separate array, bound to a texture, which is just read when updating
the spins of the other colour. This scheme automatically handles the z′-axis periodic
boundary conditions and reduces the number of intra-node communications. In Fig.
3.11 we report a depiction of the multi-GPU sliced scheme.

This is an interesting property which might be of use in cases where the amount
of data to transfer is low and the latency time is comparable to the data-exchange
time. Then, one would expect to have a significant speed-up in the communication.
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Figure 3.11. A depiction of the standard (on the left) and the sliced (on the right)
checkerboard schemes for the multi-GPU version. Updating red spins one needs to update
the bulk and the boundaries of each system partition. The standard scheme has two-
coloured boundaries while for the sliced scheme these are one-coloured: communication
(red arrows) must be two-ways for the standard implementation while is only one-
directional for the sliced scheme. Clearly, in both cases the same amount of data is
transferred.

3.5.1 Results

Let us now discuss the results we obtained for the multi-GPU implementation of
the three-dimensional Edwards-Anderson model3. Given the definition (3.18) of
psFlipN,x, it clearly appears that for N > 1 we consider the time spent by a single
GPU on its own system partition rather than the wall-clock time spent by the N

3For these measures we kept the number of spins per thread fixed to 4, one for each replicas,
since in the single-GPU results this was the optimal value.
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GPUs as a whole. However, the strong-scaling efficiency ηSC is directly defined as

ηSC =
psFlip1,x
psFlipN,x

, (3.21)

and thus the performance referred to the multi-GPU system as a whole is defined as

psFlipmulti,x = psFlipN,x/N, (3.22)

allowing to recover the usual strong-scaling efficiency definition.

ηSC =
psFlip1,x
psFlipN,x

=
psFlip1,x

N × psFlipmulti,x
. (3.23)

All data have been gathered on the Piz Daint Supercomputer which uses Tesla K20x
GPUs [81]. In the top panel of Fig. 3.12 we report the strong scaling efficiency up
to 8 GPUs. Indeed, the saturation efficiency is remarkable, ηSC & 0.9, although the
more the GPUs the further in terms of lattice size L one needs to go to reach a
stable regime. Nonetheless up to 8 GPUs the algorithm practically scales linearly
with the number of GPUs.

In the bottom panel of Fig. 3.12 where we show the values of psFlipmulti,mstd,
hence considering N GPUs as a single system, the linear scaling in N is clearly
visible for any number of GPUs. We obtain very good results in absolute terms: for
N = 2 in the range from L = 64 to L = 128 we have an almost stable performance
of 2 ps < psFlipmulti,mstd < 3 ps.

Lastly, we want to pay some attention to the power-law behaviour visible in 3.12.
It is easy to determine that roughly performances scale as

psFlipmulti,mstd ∼ L
−1. (3.24)

Now, looking at the definition (3.18), it is easy to derive that

L

N
psFlipN,x(L, k) ∝ tsw

(
L

N

)−2
, (3.25)

hence, defining the rescaled variable x = L/N we can plot x psFlipN,x as a function
of x. The result is shown in Fig. 3.13. Indeed, we can see that data for N ≤ 8
collapse almost everywhere on the same curve whereas there are some deviations
for N ≥ 16, proving that x is a good scaling variable. From the plot two distinct
regimes are visible: a first one where data lie on a horizontal line and a second one
where they grow linearly in x. In the first regime the sweep wall clock time grows
as tsw ∼ L2, i.e. the boundary communication, which scales as the system area,
dominates. In the second regime tsw ∼ L3, which means that the wall-clock time is
dominated by the bulk update task which is then able to mask the communication
between the nodes.

Such a good scaling data and collapse show the quality of the communication
technology, based on Aries routing, communications ASIC, and Dragonfly network
topology, included in the Piz Daint Supercomputer [82, 83]. We propose to use this
kind of analysis in order to measure the communication infrastructure quality.
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Figure 3.12. Top panel: the strong-scaling efficiency ηSC is reported for different numbers
of GPUs. Bottom panel: the multi-GPU system performances are shown. A power-law
behaviour as psFlipmulti,mstd ∼ L−1 is noticeable before saturation is reached for
N ≤ 16.

3.6 Conclusions

We have studied different strategies for the implementation of the Metropolis dissi-
pative dynamics for the three-dimensional Edwards-Anderson bimodal spin glass.
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Figure 3.13. Scaling plot for the performances of the multi-GPU system. The initial
constant value indicates a scaling for the sweep wall-clock time as L2, while for the linear
growth in x the sweep time scales as L3 signaling a cross-over from a communication
dominated to a bulk calculations dominated regime. The data collapse is possible for
the high quality of the inter-node communication.

We proposed new access patterns for both the cubic stencil data structure and
lagged-Fibonacci-like PRNGs. We showed, comparing different GPUs and different
algorithm implementations that it is possible to obtain stable performances on a
wide range of lattice sizes, 8 ≤ L ≤ 256. For some GPUs our new sliced scheme
performs slightly better than the other schemes, for the version which uses the
MINSTD PRNG. However, the sliced scheme performs always better for large sizes
L and when the data transfer load is increased using more complex PRNGs. In
particular the sliced scheme gains roughly the 30% over standard implementation for
the cuRand XORWOW. As for the comparison of different PRNGs, we showed that
our implementation of the full Mersenne-Twister MT19937 performs better than
the standard cuRand XORWOW thus indicating a new implementation strategy
for PRNGs which turns out to be very efficient for memory bandwidth demanding
algorithms. Indeed, the MT19937 performs only 70% worse than the MINSTD
congruential PRNG with our approach.

Of course at the basis of such results there is the possibility of using the asyn-
chronous multispin-coding (AMSC) technique which allows us to store one spin of
32 different systems in a word.

In terms of single GPU we showed that it is possible to obtain performances
comparable to those of dedicated FPGA hardware [79] although one should be
careful in this respect. However, single GPU performances are enough to obtain
competitive results for critical parameters estimations using the out-of-equilibrium
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relaxation regime as we shall see in the next chapters.
Furthermore, we explored the multi-GPU version of the sliced scheme which

presents the intriguing feature of halving the number of MPI data transactions
while, obviously, keeping the total amount of data transfer fixed. We showed that a
very high strong-scaling efficiency can be reached leading to scientifically interesting
performances in the range 64 ≤ L ≤ 128.

Many of these result can be extended and reused outside the statistical mechanics
domain since they involve cubic lattice discretization, along with their multi-GPU
extension, and high quality random numbers PRNGs implementations.
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Chapter 4

Out-of-equilibrium finite-size
scaling

The aim of this chapter is the presentation of our new out-of-equilibrium finite-size
scaling technique allowing us to measure the critical temperature, the dynamic
and all the static critical exponents exploiting the relaxation dynamics of a system
starting from a random, i.e. infinite temperature, initial condition.

To do so, we first review the past literature for out-of-equilibrium techniques
which might be applied to the three-dimensional Edwards-Anderson model (EA3D),
or to other systems, in order to have an idea of the frame in which our work is
inserted. Then, we will explain our approach in the framework of the finite-size and
finite-time scaling hypotheses in Chapter 1.

4.1 Previous techniques
The quest for a reliable off-equilibrium technique for measuring the critical tempera-
ture and the critical exponents characterizing a second order phase-transition has
been the subject of many efforts in the last thirty years. For homogeneous systems
undergoing such phase transitions, standard equilibrium finite-size scaling turns out
to be a robust method, as for the determination of the critical parameters and the
of the finite-size corrections.

However, for many inhomogeneous systems, such as spin glasses, disorder and
frustration render the thermalization of large-size systems ano almost impossible task
with the computational resources available today. These difficulties are also enhanced
near the critical temperature where the critical slowing down of the dynamics occurs.
In many cases the very existence of a phase-transition is an open issue mainly because
of the difficulties in applying the equilibrium finite-size scaling framework to such
systems.

It is possible to follow a two-fold approach in order to overcome these problems:

• one can use commercial high-end (e.g., GPUs) or purpose-driven (e.g., FPGAs
[79, 29]) hardware in order to obtain the fastest MC simulations possible with
the present resources;

• alongside, one can look for off-equilibrium techniques in order to obtain data
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from system of larger sizes with respect to those accessible in equilibrium
simulations.

Scaling laws controlling the critical relaxation of a system undergoing a second-order
phase transition are a well-known subject [24, 84] which is under good control. As
we have shown in Chapter 1 the critical behaviour is governed by the static critical
exponents along with a new dynamic exponent z which is the same for different
dynamics in the same dynamic universality class.

Most of the works we analyze below are consider the purely relaxational, or
type-A [24], dynamics, which can be implemented using the Metropolis Monte Carlo
algorithm. Although there are many different approaches, they all rely on two
scaling ansatzes. First the divergence of the relaxation time τ as a function of the
correlation length ξ scales as

τ ∼ ξz. (4.1)
This relation is also used in order to probe the very existence of a phase transition
in experimental works where the equilibration time of the system exceeds the
experimentally accessible time range. Since the correlation length scales near the
critical point as ξ ∼ |ε|−ν , we can write

τ ∼ |ε|−zν = 1
βc
|β − βc|−zν . (4.2)

This relation is usually fitted to experimental, or simulation, data in order to get
estimations of βc and of the product zν. Such a procedure is well-suited for a direct
comparison of experimental and simulation data. However, in (4.2) we are discarding
corrections to scaling which might give a significant contribution.

The second scaling relation is the finite-time scaling one [85, 86] which we report
here for a generic observable S to first order in the first irrelevant scaling field

S = tλ/zνSt(εL1/ν , tL−z)
[
1 + ui1

tω1/z
s1t(εL1/ν , tL−z)

]
, (4.3)

where λ is some critical exponent. The case λ = 0 applies to a RG invariant
observable. One of the possible uses of this scaling ansatz is the following. The
thermodynamic limit is defined as tL−z → 0, hence it can be reached either by
letting L grow indefinitely or by probing ‘small’ times such that tL−z � 1. Indeed,
one always need to keep in mind that such regime is only valid if the correlation
length ξ is smaller than the lattice size L while being sufficiently larger than the
lattice spacing a

a� ξ(t)� L. (4.4)
This request is necessary in order to avoid strong corrections to scaling which would
be present for ξ ∼ a, and finite-size effects present for ξ . L.

In the infinite-volume regime one expects the values of S t−λ/zν , as a function of
tL−z, to be constant. However, the presence of z as an unknown parameter greatly
complicates the scaling analysis introducing another free parameter.

As a consequence, one of the most common approaches consists in fitting simu-
lation data to some effective time power law and then study the behaviour of the
measured effective exponents. This is one of the most common approach in the
previous works as we illustrate below.

We will now review the past literature on the subject.
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4.1.1 Equilibrium dynamics

The paper by Ogielski [87] in 1985, is one of the first works we are aware of in
which the dynamic behaviour has been studied in order to measure both the critical
temperature and the product of the critical exponents zν. In this paper the simulated
lattice sizes are L = 8, 16, 32 and 64. The number of samples is Nsamp = 64 for
L = 8, Nsamp = 32 for L = 16, Nsamp = 2 for L = 32 and Nsamp = 1 for L = 64.
The simulations were performed at equilibrium, studying the dynamic behaviour of
the correlation function q(t), defined as

q(t) = 1
V

∑
x

[〈σx(0)σx(t)〉] . (4.5)

The angular brackets denote the thermal averages and the square ones the average
over different disorder realizations. Starting from a continuous version of the master
equation for the evolution of the probability distribution and its Fourier transform

∂P (σ, t)
∂t

=
∑
{σ′i}

Γ(σ|σ′)P (σ′, t), −ωP̃ (σ′, ω) =
∑
{σ′i}

Γ(σ|σ′)P̃ (σ′, ω), (4.6)

it follows that, in the eigenvectors basis, the single-spin correlation function reads

〈σx(0)σx(t)〉 =
∑
ω

|〈σxP̃ (σ, ω)〉|2 exp(−ωt). (4.7)

The different eigenvalues ω are related to different relaxation times as τ = 1/ω. In
order to determine the longest relaxation time τ at a given temperature, equation
(4.5) can be equivalently written as

q(t) =
∫ ∞

0
dτρ(τ) exp(−t/τ),

∫ ∞
0

dτρ(τ) = 1, (4.8)

where ρ(τ) is interpreted as the correlation coefficient averaged over the disorder
distribution. In the case of a finite gap between the lowest eigenvalue ω0 and zero,
integral (4.8) is dominated by the largest-time contribution. On the other hand, if
the eigenvalues accumulate at ω = 0 then one must deal with the entire distribution
of the relaxation times ρ(τ). The moments of this distribution are obviously related
to the autocorrelation function (4.5) as∫ ∞

0
dτ τk+1ρ(τ) = 1

k!

∫ ∞
0

dt tk q(t), (4.9)

so that one defines the average relaxation time τav as the first moment corresponding
to the time integral of q(t). If the dynamic scaling hypotheses holds, then from
standard scaling arguments it follows that near the critical point the autocorrelation
function should be described in terms of a scaling function (neglecting finite-size
corrections) as

q(t) 't−β/zνf(εt1/zν) = t−xQ(tεzν) = t−xQ(t/τ),

x = β

zν
= 1

2z (d− 2 + η),

τ =ε−zν = (β − βc)−zν ,

(4.10)
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where one considers the dependence on tL−z � 1 as negligible. Given this scaling
form it is possible to obtain an estimate of τ observing that

τav =
∫ ∞

0
dt q(t) =

∫ ∞
0

dt t−xQ(t/τ) = τ1−x
∫ ∞

0
dy y−xQ(y), y = t/τ, (4.11)

hence, it is possible to write

τ =
∫∞

0 dt t q(t)∫∞
0 dt q(t) . (4.12)

Another consequence is that, if the dynamic scaling hypothesis holds, since by Eq.
(4.11) one has τav ∝ τ1−x, then also τav diverges near the critical temperature but
with a different exponent zav given by

zav = z(1− x) = 2z − d+ 2− η
2 . (4.13)

Combining these different definitions one defines a consistency condition linking z
to other static exponents. In [87] the author fitted the estimates of τav(T ) and τ(T )
at different temperatures to

τav = aε−zavν , τ = bε−zν . (4.14)

Requiring optimal scaling for both quantities with a consistent set of the critical
parameters {βc, z, ν, η}, and using the equilibrium value of η = −0.22(5) and ν =
1.3(1) from [88] and [38], the outcome of the measures was: Tc = 1.175(25), βc =
0.851(21), z = 6.1(3) and zav = 5.4(2).

4.1.2 Equilibrium and off-equilibrium mixing

Stemming from Ogielski’s paper there is a series of works [89, 90, 91, 92] which aim
at studying the universality of the spin-glass transition for various three-dimensional
models specified by different probability distributions for the coupling constants:
typically, the comparison is made using the bimodal, Gaussian and Laplacian
distributions. The proposed method uses out-of-equilibrium relaxation measures
together with static measures in order to estimate the critical parameters. Indeed,
it is closely related to that of [87] and the main difference is that the latter relies
on equilibrium dynamics. The out-of-equilibrium relaxation of some observables
is defined as its dynamic evolution at a given finite value of β, starting from an
infinite-temperature configuration of the system. This choice gives a sizeable gain
over the previous method since the dynamic measures are performed completely out
of equilibrium.

The proposed method works as follows. The out-of-equilibrium relaxation of
q(t), which is the same as defined in (4.5), has the functional form of eq. (4.10) and
at the critical point one has

q(t) = λt−x (4.15)
where λ is a size-independent constant and we have assumed that L� ξ(t) so that
finite-size effects are negligible. It is also possible to measure the out-of-equilibrium
susceptibility of the overlap order parameter χ which at the critical point scales as

χ(t) = 1
V

〈∑
x

σax(t)σbx(t)
〉2
 ∼ t(2−η)/z = th, (4.16)
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where the Latin superscripts denote different replicas, i.e., systems sharing the same
disorder realization but with different dynamic histories starting from different initial
conditions.

These scaling relations strictly hold only at the critical temperature but one can
use them also in an off-critical regime obtaining temperature dependent exponents,
x(β) and h(β). Given this pair of effective exponents, it is possible to obtain another
pair of effective exponents, z(β) and η1(β), which are defined as

η1(β) = 4x(β)− h(β)(d− 2)
2x(β) + h(β) , z(β) = d

2x(β) + h(β) . (4.17)

At the critical point the equilibrium susceptibility scales as

χSG = L2−ηµ, (4.18)

where µ is a size-independent quantity so that from equilibrium simulations it is
possible to obtain an independent estimate of η. Again, one extends this scaling form
to the off-critical region defining a second effective exponent η2(β). Now, the general
idea is to match, using two different combinations, the static effective exponents
with those determined in the out-of-equilibrium regime. Since the scaling forms
are exact only at the critical temperature, a crossing point, signaling the critical
temperature, is expected.

In [89, 90] the authors decided to match directly the effective exponents η1(T ) and
η2(T ). In [89] the data of [87] and [93] were used to validate the method obtaining:
Tc = 1.17(1), z = 6.0(2) and η = −0.25(2). In [90] the authors combined their
data from out-of-equilibrium simulations with those of [87] and [94] obtaining new
estimations: Tc = 1.20(1) and η = −0.21(2). The critical temperature is compatible
in three standard deviations with the previous estimate.

In [91] the authors matched to h(β) a new exponent h∗(β)

h∗(β) = 2x(β)(2− η2(β))
d− 2 + η2(β) (4.19)

obtained by using the equilibrium estimates of η2(β) and the off-equilibrium estimates
of x(β), used to eliminate the z(β) dependence. In this work the authors allow for
the presence of finite-time scaling corrections writing for the overlap susceptibility

χ = Ath(1−Bt−ω/z) (4.20)

For the out-of-equilibrium measures the authors used data coming from lattices
of sizes L = 20 up to L = 28. At T = 1.2 for L = 28 the number of the disorder
realizations is Nsamp = 6766. For the equilibrium measures data were taken from
[94]. The analysis at equilibrium was performed introducing an effective finite-
size correction exponent ω. The crossing of h(β) and h∗(β) led to the results:
Tc = 1.195(15), ω = 2.9(6) and z = 5.65(15).

Finally, in [92] the authors introduce a two-times version of q(t), q(s, t) defined
as

q(s, t) = 1
V

∑
x

[〈σx(s)σx(t)〉] , (4.21)



60 4. Out-of-equilibrium finite-size scaling

Defining τ = t−s with t > s they write the critical scaling relation and its asymptotic
form in the limit s� τ for a fixed value of the linear size L

C(t, s) = s−xfc(t/s), C(t, s) ∼ τ−x. (4.22)

In the paper the authors verify the scaling at finite values of the ratio t/s and
extrapolate the value of x. However, the data for x(β) are taken from the quasi-
equilibrium regime s� τ . As for the other work the equilibrium and off-equilibrium
overlap susceptibilities are used in order to determine the effective exponents h(β)
and η2(β), which, together with x(β), are used to extrapolate two different effective
dynamic exponents z(β) and z+(β). The crossing point again signals the critical
temperature. The out-of-equilibrium simulations were performed on a system of
linear size L = 50 but the number of samples was not specified, nor the sizes and the
number of samples of the equilibrium simulations. No corrections to scaling terms
were introduced. The estimated critical parameters were: Tc = 1.19(1), η = −0.22(2)
and z = 5.7(2). The range of waiting times is 0 < tw ≤ 1600.

4.1.3 Off-equilibrium response function

In [95] the author proposes a technique which only uses out-of-equilibrium measures
on a system relaxing at a finite temperature starting from an infinite-temperature
configuration. This work can be ssen as an improvement of the scheme proposed in
[89, 90, 91, 92], we just reviewed in the previous subsection, where equilibrium and
out-of-equilibrium data were needed.

In [95], the author performs a critical review of previous results stressing how
important is the choice of the minimum waiting time s in the estimation of the
effective exponents. The author uses the two-time correlation function and the
integrated response function, obtained using an external field applied up to a waiting
time s. The critical scaling form of the response function reads

ρ(t, s) = 1
β

∫ s

0
duR(t, u) = 1

Nβ

∫ s

0
du

N∑
i=1

[
δ〈σi(t)〉
δhi(u)

]
= s−afρ(t/s). (4.23)

Now, at the critical point, one expects the fluctuation dissipation theorem to hold,
implying the equality x = a. Again, one measures the effective exponents for different
values of β. The value minimizing the (squared) difference between the two measures
is taken to be the critical temperature.

The main difference with respect to the previously discussed works is that
the exponents are measured from the finite-time behaviour of the correlation and
response functions. No collapsing of the exponents is noticed for small values of s.
The estimated value of the critical temperature for the bimodal case is Tc = 1.135(5).
The simulated lattices have linear size L = 50 with a number of samples varying
from Nsamp = 3000 to Nsamp = 5000 with waiting times up to tw = 1600, which is
the same as in [92]. The same method has recently been applied in [96].

4.1.4 Non-equilibrium relaxation

In the paper [97] the authors propose the so-called non-equilibrium relaxation
method (NER) in order to estimate the critical temperature from out-of-equilibrium
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simulations. A review of this method can be found in [23]. The authors choose
to study the dynamic relaxation of the clone correlation function (CCF) which is
defined as follows. Take an all-up state at the beginning of the simulation, then
after a waiting time tw duplicate the configuration and let the two replicas {σ(1)

i }
and {σ(2)

i } evolve independently using different random number sequences, then the
clone correlation function reads

Q(t, tw) = 1
N

N∑
i=1

[
〈σ(1)
i (t+ tw)σ(2)

i (t+ tw)〉
]
. (4.24)

Since the clones start from the same configuration, we have Q(0, tw) = 1 for any
value of tw. The Q(t, tw) decays towards the equilibrium overlap value as t → ∞.
At the critical temperature, and in the thermodynamic limit, the relaxation of the
order parameter is described by a power-law decay, hence it is possible to distinguish
the phases measuring the local exponent defined as

λ(t, tw) = −d logQ(t, tw)
d log t . (4.25)

As a function of the ratio tw/t the local exponent diverges in the paramagnetic phase
as tw/t → 0, since the decay of Q(t, tw) is exponential in this limit. In the same
limit at the critical temperature it is supposed to go to a constant value. Hence,
at least it is possible to determine an upper bound to the critical temperature by
observing the divergence of the local exponent in the time range of simulations.

As for the lower bound the authors found that the local exponent still converges
to a constant even in the spin-glass phase. Hence, it does not give enough information.
So they turned to the dynamic scaling form expected at the critical point for the
clone correlation function

Q(t, tw) = t−λqw fQ(t/tw), (4.26)

and found out that in the spin-glass phase there is no scaling for the considered
range of t/tw while at the candidate critical temperature Tc = 1.2 scaling holds good.
The last temperature at which the scaling is observed is T = 1.1.

Using this criterion the authors estimate the critical temperature in the range
1.00 < Tc < 1.25. As the authors noticed, even though the uncertainty is bigger
than those of other works, at least the uncertainty sources are under control.

The simulations were performed on cubic lattices with skew boundary conditions.
The considered lattices sizes range from V = 292 × 30 up to V = 1272 × 128 and the
temperatures belong to the interval 0.8 ≤ T ≤ 2.2. The largest times were tw = 108

and t = 2× 108. The number of samples was not specified.

4.1.5 Extrapolation techniques

In [98] the authors analyze the out-of-equilibrium behaviour of the spin-spin correla-
tion function which is defined as

C(t, tw) = 1
V

V∑
i=1

[〈σi(t)σi(tw)〉] . (4.27)
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Using the ansatz given in [99, 100]

C(t, tw) = a(t) + b(t)t−c(t)w , lim
t→∞

lim
tw→∞

C(t, tw) = lim
t→∞

a(t) = qEA. (4.28)

the numerical data for C(t, tw) were fitted to a(t) + b(t)t−c(t)w . Then a(t) was fitted
to a constant function for large times obtaining qEA(β). The critical behaviour of
the order parameter is described by the power-law relation

qEA(β) = A(β − βc)βq , (4.29)

where βq is the critical exponent. The results were: βc = 0.866(2), or equivalently
Tc = 1.155(3), and βq = 0.52(9).

Simulations involved two different lattice sizes, and two different series of temper-
atures and Nsamp = 58 for each of them. For L = 30 the simulated temperatures are
β = 2.00, 1.67, 1.25, 1.05, 1.00, 0.95, 0.91; for L = 60 the simulated temperatures
are β = 2.00, 1.67, 1.25, 1.00. Hence, the estimated critical temperature lies outside
the simulation temperature range.

4.1.6 Dimensionless ratios

Even though the method developed in [101] is not applied to the 3D Edwards-
Anderson model it is useful to review it. In the hypothesis of an infinite-size dynamic
behaviour, i.e. before finite-size effects appear, it is possible to define a dimensionless
ratio

X(τ, β) = 1
τ

∫ τ
0 dt tC(t, β)∫ τ
0 dtC(t, β) , C(t, T ) = 〈si(t)si(0)〉, (4.30)

where t is the duration of a finite-temperature dynamics starting from an infinite
temperature initial state and τ is a fixed time value. The infinite temperature
initial configuration justifies the form of the correlation function C(t, T ).This ratio
is similar to the one used by Ogielski in [87] to define the relaxation time. This
ratio should be independent from the choice of τ only at the critical temperature.
Hence, for a given lattice size, the crossing of the curves at different β and different
τ should signal the phase transition.

4.1.7 Out-of-equilibrium relaxation time

In [102] the authors used the non-equilibrium relaxation method proposed in [97],
and studied the dynamic behaviour of the overlap susceptibility which at the critical
point and in the thermodynamic limit, scales as χ(t) ∼ tγ/zν .

In order to determine the critical temperature, one defines a relaxation time
as a function of the temperature τ(β) which is obtained by collapsing the data of
χSG(t) t−γ/zν against t/τ(β) for all the simulated temperatures at once. Once τ(β)
is measured, the critical temperature and the product of critical exponents zν is
determined by fitting the data to

τ(β) ∼ (β − βc)−zν . (4.31)

Then, it is possible to determine the value of γ. The author stresses that it is
important to have a large number of replicas for the thermal average. The simulated



4.1 Previous techniques 63

lattice size is L = 49 and the number of samples is Nsamp = 393 for simulation times
up t = 105, and Nsamp = 88 for times up to t = 4× 106. The number of replicas is
not specified. The results are Tc = 1.17(4), γ = 3.6(6), ν = 1.5(3) and z = 6.2(2).

4.1.8 Out-of-equilibrium scaling

In [103] the author introduces a new scaling method which stands on a different
footing with respect to the works we reviewed so far. For the first time the finite-size
scaling relations are applied to out-of-equilibrium relaxation data. In particular, this
method avoids the estimation of the critical exponent z in the determination of the
critical temperature.

The author starts by introducing a different definition of correlation length. Since
in the relaxation dynamics one has ξ � L, the three-dimensional correlation function
should not decay as

G(r) ∝ exp(−r/ξ)
r

, (4.32)

but rather as exp(−r/ξ) without the algebraic term r−1, whose presence is expected
from mean-field equilibrium arguments. Then, a new definition for a correlation
length is given

ξN = 1
km

√√√√√ χ

χ̃(k) − 1, (4.33)

which differs from the usual second-moment definition

ξ2 = 1
2 sin(km/2)

√
χ

χ̃(k) − 1, (4.34)

where k = (km, 0, 0), km = 2π/L, and χ̃ is the Fourier transform of the overlap
susceptibility χ. A scaling analysis is presented in order to choose which definition
to use. For the three-dimensional Ising model the author claims that the data of
ξ/L, with ξ given by (4.34), scale only if an incorrect value for z is used. Hence the
author’s choice is adopted.

Three different scaling procedures are presented:

• The determination of the exponent z is achieved by the best data collapse
of ξ/L as a function of t1/z/L. Here it is not discussed whether being at the
critical temperature is a necessary condition.

• The anomalous dimension η is obtained considering that since both suscep-
tibility and correlation length grow algebraically near the critical point, one
has χ ∼ ξ2−η, hence χL−(2−η) ∼ (ξ/L)2−η. Therefore, in a log-log plot one
expects a collapsing of data on a straight line of slope 2 − η. The choice of
the right critical temperature is said not to be so important, and that any
temperature in the critical zone would allow a good estimate of the critical
exponent. However, because of the study reported in [39] we know that this is
not true because of the severe analytic corrections of the susceptibility.

• The determination of βc and ν is carried out in an independent way with
respect to the previous estimates. Once the data, free from finite-size effects,
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are chosen with an unexplained procedure, the ratio χ(t, T )/ξ2−η is plotted
versus ξ(t, T )/|T − Tc|−ν and the critical parameters are estimated by the
best collapse onto a single curve. Not many technical details are reported.
He used Nrep = 256 replicas for a given disorder realization and considered
temperatures from T = 1.60 to T = 1.00 with ∆T = 0.05. Additionally, he
considered T = 0.9.

The results were: Tc = 1.18(1), ν = 1.40(5) and η = −0.20(1).
Finally, in [104], the authors applied the same technique to the so-called window

measurements: only a bulk portion of the system is considered and the various
observables are shown to be rather insensitive to the chosen boundary conditions.

4.2 Similarities and common problems
The methods we listed above, with the exception of the ratio and dynamic out-of-
equilibrium scaling methods [101, 103], share the general strategy of fitting values
which are the result of previous fits. This scheme leads to not well controlled
estimates. This lack of control is also due to the absence of finite-size, or finite-
time, scaling corrections in most of the works which rely on the hypothesis of
the thermodynamic-limit behaviour. Because of this hypothesis one considers the
dependence of the scaling functions on the argument tL−z, as a weak dependence.
A careful explanation of the method used to check the validity of such an hypothesis
is always neglected. The results of the various works reported in table 4.1.

Method Tc ν η ω

Equilibrium
dynamics [87] 1.175(25)

Equilibrium and
off-equilibrium

mixing

[89] 1.17(1) −0.25(2)
[90] 1.20(1) −0.21(2)
[91] 1.195(15) 2.9(6)
[92] 1.19(1) −0.22(2)

Off-equilibrium
response function [95] 1.135(5)

Non-equilibrium
relaxation [97] 1.12(12)sys

Extrapolation
technique [98] 1.155(3) β = 0.52(9)

Off-equilibrium
relaxation time [102] 1.17(4) 1.5(3) γ = 3.6(6)

Off-equilibrium scaling [103] 1.18(1) 1.40(5) −0.20(1)

Equilibrium
FSS

[39] 1.109(10) 2.45(15) −0.375(10) 1.0(1)
[31] 1.1019(29) 2.562(42) −0.3900(36) 1.12(10)

Table 4.1. Results for critical parameters for various off-equilibrium techniques and most
recent equilibrium finite-size scaling (FSS) estimates [39, 31]. The exponents β and γ
are related to ν and η by β = ν(1 + η)/2, γ = ν(2− η).
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It appears that in most of the cases the estimates of the critical temperature are
much different from the most recent equilibrium values [39, 31], in a measure which
is not explainable in terms of statistical error. Indeed finite-size corrections seem
to be the most important source of error, together with uncontrolled corrections
due to the failure of the thermodynamic-limit hypothesis. Indeed, we will ses that
such a regime is fully attained only for very large system sizes for a reasonably long
time-window. Most of the system sizes used in these works are too small to allow an
infinite-size analysis.

Only four of the analyzed works [87, 97, 102, 103] give compatible results for
the critical temperature with respect to equilibrium estimates, although with much
bigger errors. However, in both [102, 103] the result for ν is compatible within three
error-bars, while that for the anomalous dimension η [103] is compatible but not
very accurate.

Finally, in table 4.2 we report the various estimates of the dynamic exponent
z together with the largest value of the waiting time reached in simulations. The
different estimates are compatible.

Method z tMAX
w

Equilibrium
dynamics [87] 6.1(3)

Equilibrium and
off-equilibrium

mixing

[89] 6.0
[90]
[91] 5.65(15)
[92] 5.7(2) 1600

Off-equilibrium
response function [95] 1600

Non-equilibrium
relaxation [97] 108

Extrapolation
technique [98] 3.7 · 108

Off-equilibrium
relaxation time [102] 6.2(2)

Table 4.2. Different estimates of the dynamic exponent z and values of the max waiting
time tMAX

w .

4.3 Out-of-equilibrium finite-size scaling

Let us now present our novel technique which differs almost completely from the
previous works with the exception of [103] with which some similarities can be found:
a common feature is the bypassing of the exponent z as for the measure of the
critical temperature and critical exponents and the use of the finite-size scaling
relation in the out of equilibrium regime. Our approach heavily relies on the dynamic
finite-size scaling ansatz [85, 86] of which we gave an explanation in Chapter 1 and
the main feature is to substitute the time dependence of the various observables with
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a dependence on an RG invariant quantity which exhibits a monotonous growth in
time. In this setting it is still possible to use the entire finite-size scaling framework
which, in particular, allows for the control of finite-size corrections which we do not
claim to be negligible. Indeed, we will show how these corrections are most important
in the very beginning of the relaxation dynamics even in the framework of the usual
non-equilibrium relaxation scheme [102, 97, 23]: indeed the thermodynamic-limit
behaviour is reached only after a certain time and for very large systems.

Another important difference with respect to the previous works lies in the
demonstration that a huge number of samples is needed in order to extract the right
behaviour while the number of replicas mainly depends on the kind of observables
one wants to measure. Indeed to get a competitive estimate we needed to simulate
a number of samples compatible with, and sometimes even greater than, that of [31].
Hence, the possibility of simulating large system sizes with this kind of technique
seems to be ruled out with the actual GPU computational resources for what concerns
the relaxation dynamics of the three-dimensional Edwards-Anderson model.

Let us now define our scaling ansatz. The usual dynamic finite-size scaling
hypothesis states that for any given pair, A and B, of RG invariant quantities near
the critical point one can write

A(t, L, β) ' A
(
tL−z, εL1/ν

)
+ u (β)

Lω
Aω

(
tL−z, εL1/ν

)
,

B(t, L, β) ' B
(
tL−z, εL1/ν

)
+ u (β)

Lω
Bω
(
tL−z, εL1/ν

)
,

(4.35)

where ε = β−βc, ω is the exponent of the first corrections to scaling and u(β) is the
associated non-linear scaling function. It is then possible, for a monotonic dynamic
behaviour and at a given temperature, to write the time dependence tL−z in terms
of one of the two observables which we choose to be B

tL−z ' T
(
B, εL1/ν

)
+ u (β)

Lω
Tω
(
B, εL1/ν

)
, (4.36)

so that our scaling ansatz directly follows

A(t, L, β) ' Ã
(
B, εL1/ν

)
+ u (β)

Lω
Ãω

(
B, εL1/ν

)
. (4.37)

As we mentioned above there is no need to take into account the presence of
z in order to get estimates of the other critical parameters. Indeed using RG
invariant observables it is possible with a single fit procedure to obtain three different
parameters: βc, ν and ω. In order to obtain the dependence of A in terms of B one
just needs to associate the observables for a given value of the MC time t.

Let us analyze how to implement this procedure in practice. We can choose B
as the RG invariant ratio Rξ = ξ/L, and A as one of the possible Binder cumulants,
say U4. The scaling ansatz reads

U4(t, L, β) ' Ũ4
(
Rξ, εL

1/ν
)

+ u (β)
Lω
Ũ4,ω

(
Rξ, εL

1/ν
)
, (4.38)

which has, for a fixed value of Rξ, the same functional form of the usual equilibrium
finite-size scaling ansatz. Hence, for what concerns the estimate of the critical
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temperature, our approach turns out to be an off-equilibrium generalization of the
familiar Binder crossing criterion.

In the same way it is possible to obtain a scaling relation for the overlap
susceptibility χ allowing us to measure also the anomalous dimension η. Thus we
write

χ(t, L, β) ' L2−ηv(β)χ̄
(
Rξ(t), εL1/ν

)
+ v(β)u(β)

Lω
χ̄ω
(
Rξ(t), εL1/ν

)
, (4.39)

where the function v(β) represents the analytic corrections to scaling deriving from
the scaling field associated to an external magnetic field [39]. Usually one wants to
have as few free parameters as possible so that the strategy we propose is to measure
βc, ω and ν from the scaling of the Binder cumulant in the first place, then it one
substitutes these values in the susceptibility scaling in order to obtain an estimate
of η. However, from a logical point of view it is possible to estimate all the critical
parameters appearing the susceptibility scaling form (4.39) just with the data series
of Rξ(t) and χ(t), but it would not be an efficient method from a numerical point of
view.

We also considered the possibility to use the off-equilibrium generalization1 of
the temperature derivatives of some observables, in order to get different estimates
of the critical exponent ν. In particular we computed the temperature derivatives of
U4(t) and logχ(t) which are expected to scale as L1/ν .

Finally, it is possible to estimate the value of z using the data collapse of RG
invariant quantities once the value of the critical temperature is known. This is just
a qualitative explanation of the analysis we performed. A more detailed account
will be given in the next chapter.

1In the out-of-equilibrium regime it is not possible to give an exact definition of temperature,
however it is possible to define observables which in the equilibrium limit would be equal to some
temperature derivative.
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Chapter 5

Out-of-equilibrium Results

In this chapter we summarize our results for the data analysis using our out-of-
equilibrium finite-size scaling ansatz. We start by giving the definitions of the various
observables we studied, using some care in describing how to generalize common
equilibrium definitions to the out-of-equilibrium regime. We continue with a detailed
discussion of the behaviour of RG invariant observables in order to establish a
clear link between the static and the dynamic approach. We explain and verify
the hypothesis we used in order to fit the data and obtain the estimates for the
critical parameters βc, ν, ω, η and z. We test our results showing different scaling
behaviours and we especially analyze the infinite-volume limit approach. Finally, we
draw some conclusions.

5.1 Observables Definitions

Here we define the set of observables which have been analyzed in this work. We
always considered two-replicas observables which were constructed in order to get
the usual equilibrium limit, hence we need to specify that the usual thermal average
corresponds to an average over different thermal histories and not merely to an
average over different pairs of replicas as it has been argued in [103]: averaging
over different short thermal histories at equilibrium leads to the same results one
would get by averaging over a single long equilibrium sequence. Practically speaking,
one prepares for a given disorder realization a number r of replicas with different
infinite-temperature (i.e. random) initial configurations which are evolved with a
simple Metropolis dynamics at a given inverse temperature β with different random
number sequences for each replica. From the evolution of the r replicas one can get
c2 = r(r − 1)/2 different values of two-replicas observables and average all of them
for each time step in a given time sequence. Since the thermal fluctuations due to
the different initial states of each replica are negligible, with respect to those due to
different disorder realizations, we do not need r to be a large number. In this thesis
we are working with r = 4. Now, one need to sample the disorder distribution so
that for given values of the lattice size L and inverse temperature β the procedure is
repeated and the values coming form different disorder realizations are averaged for
each time steps. This way we perform both the thermal average and the disorder
average at once.
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5.1.1 Basic observables

We study the critical behaviour of the overlap order parameter which, in the dynamic
regime, is defined as

q(t) = 1
c2V

∑
x

∑
a<b

[
σax(t)σbx(t)

]
= 1
c2V

∑
x

∑
a<b

[
qabx (t)

]
, (5.1)

where the Latin indices stand for replica indices, the sum
∑
a<b denotes that only

different pairs of replicas are averaged and the square bracket stand for the average
over the coupling distribution. The constant c2 equals the number of different pairs
of replicas: for each sample there are four replicas, then one has that c2 = 6. Since
our simulations are performed on lattices with periodic boundary conditions, we
write the dynamic susceptibility and its Fourier transform as

χ(t) = 1
c2V

∑
a<b

(∑
x

qabx (t)
)2
 , χ̃(t, k) = 1

c2V

∑
a<b

∣∣∣∣∣∑
x

qabx (t)e−ikx
∣∣∣∣∣
2
 , (5.2)

so that the out-of-equilibrium correlation length, or coherence length, is defined as
for the static case

ξ(t) = 1
2 sin(km/2)

√
χ(t)
χ̃(t, k) − 1, km = 2π

L
. (5.3)

We calculate the Fourier transform taking alternatively the directions k1 = (km, 0, 0),
k2 = (0, km, 0) and k3 = (0, 0, km) so that we need to sum the local overlaps qabx only
on the orthogonal planes taking the average of the results along the three directions
because the system is isotropic. The susceptibility, together with the correlation
length, is used to measure the anomalous dimension η.

We have also studied the dynamic behaviour of five Binder cumulants, or renor-
malized couplings, which are defined as follows

U4(t) =

[
c−1

2
∑
a<b

(∑
x q

ab
x (t)

)4
]

[
c−1

2
∑
a<b (

∑
x q

ab
x (t))2

]2 , (5.4)

U22(t) =

[
c−1

22
∑
a<b<c<d

(∑
x q

ab
x (t)

)2 (∑
y q

cd
y (t)

)2
]

[
c−1

2
∑
a<b (

∑
x q

ab
x (t))2

]2 − 1, (5.5)

U23(t) =

[
c−1

23
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(∑
x q

ab
x (t)

)2 (∑
y q

ac
y (t)

)2
]

[
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2
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∑
x q
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x (t))2

]2 , (5.6)

U13(t) =

[
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13
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(∑
x q
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) (∑
y q
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y (t)

) (∑
z q
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z (t)

)]
[
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2
∑
a<b (

∑
x q
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x (t))2

]3/2 , (5.7)
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U14(t) =

[
c−1

14
∑
a<b<c<d

(∑
x q

ab
x (t)

) (∑
y q

bc
y (t)

) (∑
z q

cd
z (t)

) (∑
w q

da
w (t)

)]
[
c−1

2
∑
a<b (

∑
x q

ab
x (t))2

]2 . (5.8)

As before the constants ci accounts for the multiplicity of the n-tuples of different
replica pairs: with four replicas the values are, c22 = 3, c23 = 12, c13 = 4 and c14 = 3.
These quantities have been used together with the correlation length in order to
determine the critical temperature and the critical exponents ν and ω.

A remark is in order. There is a subtlety one should be aware of when writing
the off-equilibrium generalization of some equilibrium observable. Let us consider
the Binder cumulant U22 whose equilibrium definition reads

U22 =

[
〈
(∑

x q
12
x

)2〉2][
〈(
∑
x q

12
x )2〉

]2 − 1 (5.9)

where the angular brackets denote the thermal equilibrium average. The difference
between the definitions (5.5) and (5.9) lies in the fact that the square of an equilibrium
average of a two-replicas observable, 〈x12〉2, can be obtained using two sufficiently
decorrelated part of the same thermal history giving two independent estimates
〈x12〉1 and 〈x12〉2, so that one has 〈x12〉2 = 〈x12〉1〈x12〉2. This technique cannot be
applied in the off-equilibrium generalization of this kind of observables. Since the
thermal average is replaced by the equal time average of different thermal histories
one needs more than two replicas in order to define an adequate generalization of
the powers of two-replicas thermal averages which we write as

〈x12〉2 → x12(t) · x34(t). (5.10)

Hence, powers of equilibrium estimates of two-replicas observables correspond to
products of equal-time values given by different pairs of replicas: for a generic power
k, one needs to have k independent pairs of replicas. This argument naturally
generalizes to observables involving an arbitrary number of replicas. In figure 5.1
we report a graphical approach for the determination of the terms needed for each
Binder cumulant.

Finally, we remark that this kind of Binder cumulant has also been used in the
recent work [31] of Janus collaboration. Comparing the equilibrium definition the
relation between the observables reads

U4,J = U4,

U22,J = (U22 + 1)/U4,

U111,J = U
4/3
13 /U4,

U1111,J = U14/U4. (5.11)

Only the cumulant U23 has not been used so far.

5.1.2 Temperature derivatives

We have also studied two different temperature derivatives. Indeed, in an out-
of-equilibrium context the concept of temperature derivative is not well-defined.
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Figure 5.1. A graphical approach for the calculation of the different terms of Binder
cumulants for 4 replicas. Each line represents an overlap term. All possible combinations
must be taken into account.

However, in the same spirit of the previous definitions it is possible to write quantities
that converge to the value of the usual equilibrium temperature derivative. Let us
begin from the definition of the thermal average of a two-replicas observable

[
〈Oab〉

]
=

 1
Z2

∑
{σai =±1},{σbi=±1}

Oab exp{−β
(
Ha +Hb

)
}

 . (5.12)

One has that its derivative with respect to the inverse temperature β reads

d
[
〈Oab〉

]
dβ =

[
〈Oab〉〈Ha +Hb〉 − 〈Oab

(
Ha +Hb

)
〉
]
. (5.13)

As in the definition of Binder’s cumulants any time we need to calculate some power
of an equilibrium thermal average we need to multiply different replicas since the
powers of equilibrium averages are always computed on uncorrelated ranges of the
equilibrium thermal histories. Hence, given that r = 4 we can only calculate the
temperature derivatives of two-replicas observables. The general off-equilibrium
form is

d [O(t)]
dβ =

 1
c2

∑
a<b<c<d

Oab(t)
(
Hc(t) +Hd(t)

)
− 1
c2

∑
a<b

Oab(t)
(
Ha(t) +Hb(t)

) .
(5.14)

In particular we have computed the temperature derivative of the logarithm of the
susceptibility logχ(t) and of the Binder cumulant U4(t).
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These quantities have been adopted in order to get another estimate of the
exponent ν once the the critical temperature has been determined since one expects
at the critical point

d
dβ logχ(t) = 1

χ(t)
dχ(t)
dβ ∼ L1/ν ,

d
dβU4(t) ∼ L1/ν . (5.15)

However, we will report only qualitative results concerning these quantities.

5.1.3 Sublattice observables

We also studied the behaviour of observables computed on limited spatial regions in
the cubic lattice we refer to as sublattices. The aim was to study the behaviour
of finite-size effects while varying the sublattices sizes, and see if for these systems
corrections to scaling might be less severe.

We also compared the sublattices observables to their real-lattices counterparts.
Indeed, it is possible to observe the superposition of data at the beginning of the
dynamics. This superposition however worsens as the correlation length grows
marking a distinction between the real lattice and the sublattice.

We chose to examine sublattices of linear size Ls of the form

Ls = L

2m, m = 1, 2, . . . , n (5.16)

choosing the smallest sublattice to be Ls,min = 8 for every system. Since the possible
ways to divide a lattice into sublattices are too many we chose to analyze only
the exact divisions and their translations along the diagonal direction ~D = (d, d, d)
obtaining maximally different systems. The data we show in the Appendix B are
those for

~D = (4, 4, 4) , (5.17)

hence for two translations of Ls,min = 8. It follows that Ls = 16 will have four
translations and so on, doubling every time for the next bigger sublattice. At last
let us define the number of translation steps for the smallest Ls,min = 8 as

pm = Ls,min
d

= 8
4 = 2 (5.18)

The algorithm calculates all fundamental quantities, overlap qabx , the susceptibility
Fourier Transform χ̃ab (2π/Ls), and energy Ea, for the smallest sublattices. The it
builds the bigger sublattices values and translations up to the real lattice.

Now, let us focus on a fundamental aspect: the sublattices do not have periodic
boundary conditions. Hence we need to take it into account in all those quantities
which are usually calculated on the hypothesis of translational invariance. Let us
take as an example the susceptibility. We have to integrate the two point correlation
function not on the whole sublattice but just on some subset which we take at its
center for symmetry reasons. We will call this subset core, whose linear size is Lc

χc(t) = 1
Vc

∑
a<b

(∑
x∈V

qabx (t)
)∑

y∈Vc
qaby (t)

 , (5.19)
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where Vc = L3
c . Indeed for periodic systems where L = Lc we recover the usual

definition

χc(t) = χ(t) = 1
V

∑
a<b

(∑
x

qabx (t)
)2
 . (5.20)

It is reasonable to think that the smaller the size of the core the smaller will be the
effects due to the loss of translational invariance for sublattices.

Similar considerations hold for the Fourier transform of the correlation function
which reads

χ̃c

(2π
Ls
, t

)
= 1
Vc

∑
a<b

 ∑
y∈Vcore

∑
x

qaby (t) qabx (t) e−
2πi
L

(x−y)

 . (5.21)

Hence, we need to keep track of the different sublattices cores. This task is soften
by the use of diagonal translations which allows to share sublattice cores between
smaller and bigger sublattices. In fact for pm = 2 the cores of the first translation of
Ls = 8 are the same as those of the zeroth translation of Ls = 16 and so on. We
choose as the smallest size of the cores Lc = 2. Finally, all sublattices results are
averaged over all translations for fixed Ls and Lc. Indeed, because of the cores we
gain the condition over the displacements of the smallest sublattice kmin ≥ 2, which
guarantees that all cores are shared.

We have thus defined a new set of observables which should scale with the same
critical exponents as those of real lattices. We expect to observe scaling for those
that have the same values of the following ratios

S = L

Ls
, C = Ls

Lc
. (5.22)

Hence, in principle, it is possible to use these class of observables in order to get an
estimation of critical parameters. However, it is clear that these estimations would
be correlated to those of real lattices.

5.2 Monte Carlo Simulations

All simulations were performed on GPUs using the implementation we described in
Chapter 3 with the MINSTD PRNG. This choice is a priori justified by the fact that
we are using one PRNG for each lattice site which is shared by different replicas.
Using random initial seeds eventual long range correlations are to be compared to
those due to the critical behaviour which are also long range. Furthermore, the
simulation time never reaches the period of this PRNG. A posteriori, we will see
that the compatibility of the final results with those of [31] justifies such a choice.

Our computing system is inhomogeneous with a total of 9 GPUs: 3 GTX Titan,
4 GTX 680 and 1 Tesla M2090 on one cluster, and a single GTX 680 on a stand-
alone computer. The total simulation time is 27397 GPU hours which means 3.1
GPU years on a single GTX Titan which is our fastest GPU. Further details about
simulations are reported in the Appendix A.
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5.3 Out-of-equilibrium finite-size scaling
Let us now analyze the results concerning the out-of-equilibrium finite-size scaling
ansatz we presented in Chapter 4, specifically in (4.38).

The simulated cubic lattices have linear sizes in the range 8 ≤ L ≤ 64. We
considered five values of β between 0.880 and 0.910. Statistics is a crucial factor in
the analysis, hence we considered a very large number Ns of samples for each L and
β. Typically, Ns varies between 5 · 105 and a few million. Only for L = 48 and 64,
is statistics smaller: Ns = 6.5 · 105, 105 in the two cases, respectively. Essentially
all runs end when the system is still out of equilibrium. In most of the cases, data
extend only up Rξ ≈ 0.5, in some cases even less (at equilibrium [31] Rξ = 0.652(3)
at the critical point). Error bars are reported in all figures.

5.3.1 Critical Temperature, ν and ω

Let us begin by writing once again the out-of-equilibrium finite-size scaling ansatz
for the Binder cumulant U4 (4.38)

U4(t, L, β) ' Ũ4
(
Rξ, εL

1/ν
)

+ u (β)
Lω
Ũ4,ω

(
Rξ, εL

1/ν
)
. (5.23)

This expression is defined for Rξ ≤ Rξ,eq(εL1/ν), where Rξ,eq(εL1/ν) is the equilib-
rium value of Rξ for the given εL1/ν .

Indeed, ignoring scaling corrections, close to the critical point Eq.(5.23) can be
expanded in powers of ε, obtaining

U4(t, L, β) ' Ũ4 (Rξ, 0) + ∂

∂ε
Ũ4
(
Rξ, εL

1/ν
) ∣∣∣∣∣

ε=0

εL1/ν (5.24)

At fixed Rξ, the quantity U4(t, L, β) behaves exactly as in the equilibrium case: βc
is determined as the crossing point and ν is obtained by computing the slope at
βc. However, in this formulation equilibration is not needed. Equation (5.23) is
valid for any value of Rξ, hence one might think of choosing a small value for such
a parameter, reducing significantly the length of the runs. However, one must not
forget that the method is intrinsically a finite-size method, hence it can only work if
finite-size effects are not too tiny, and this, in turn, requires Rξ not too small.

In figure 5.2 we report the values of U4(t) as a function of Rξ(t) for one lattice
size L = 8 for the lowest and highest values of β we considered. The curves share
the origin point which is at Rξ = 0 and U4 ∼ 3, i.e. the infinite-temperature
values. Along the time evolution data belonging to different values of β eventually
separate. Data precision at early times is mainly controlled by the number of disorder
realizations while towards equilibrium the time dependence becomes stronger. In
figure 5.3 we report the data for two different lattice size L = 12 and L = 32 in
the entire range of β: lower/higher curve represent data at smaller/higher values
of β. We can see that the lowest L = 32 curve is lower than the lowest curve of
L = 12, both corresponding to β = 0.880, while the highest of L = 32 is higher than
the highest of L = 8 in correspondence of β = 0.910. Hence, the relative order of
data belonging to L = 12 and L = 32 has an inversion in the temperature range
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0.880 ≤ β ≤ 0.910. This result is the out-of-equilibrium generalization of the Binder
crossing from a global point of view.
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Figure 5.2. Plot of U4 as a function of Rξ for L = 8 at two boundaries of the considered
temperature interval.
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Figure 5.3. Detail of the combined plot of U4 and Rξ for two different lattice sizes
L = 12 and L = 32. The direction of increasing inverse temperature β is shown. The
temperature interval is the same for both lattices. At the lowest value of β L = 32 data
stay below those of L = 12 while the contrary happens at the highest values. This is
how the Binder crossing appears from the global point of view.

Hence, we expect that fixing the value of either U4 or Rξ, i.e. making a cut of
the data set, different curves would intersect, thus signaling the existence of a phase
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Figure 5.4. Temperature dependence of U4 for fixed values of Rξ. A shift in temperature
has been added in order to highlight finite-size dependence 1.
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Figure 5.5. Temperature dependence of Rξ for fixed values of U4. A shift in temperature
has been added in order to highlight finite-size dependence. The top panel is the farthest
away from equilibrium since for a random configuration U4 ∼ 3.

transition. In figures 5.4 and 5.5 we report such a behaviour: this is exactly what
one would expect for a standard equilibrium analysis for the Binder cumulant U4 or
for Rξ. Although we carried the final analysis substituting the time dependence with
a dependence on Rξ it is clear that any time-monotonous RG invariant quantity,
such as U4, can be used as a time-like parameter. This is a local point of view. The

1Symbols: empty red square (L = 8), blue empty circles (L = 10), orange empty triangles
(L = 12), green empty pentagons (L = 16), red filled squares (L = 20), green filled circles (L = 24),
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main difference is that the values are taken from an out-of-equilibrium regime, so
instead of having only one set of intersecting curves, one has a correlated succession
of intersection points. For such a succession finite-size effects are expected to change.
The estimate of the critical temperature, however, has to be stable as the Rξ or U4
cut changes. There is yet another way to collect evidence for a phase transition from
out-of-equilibrium data. Let us consider now two RG invariant quantities, say U4
and U13, at a fixed value of Rξ. We expect data for different sizes and temperature
to collapse onto a single curve, when plotting U13 as a function of U4. As shown in
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Figure 5.6. Data for U13 as a function U4 for three different values of Rξ. For small times
at Rξ = 0.25 both statistical errors and finite-size corrections are large, while later on at
Rξ = 0.45 the expected scaling is clearly visible2.

figure 5.6, the expected scaling is clearly visible only in the late dynamic evolution at

blue filled triangle (L = 32), purple filled pentagon (L = 48).
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Rξ = 0.45, where statistical errors and scaling corrections are smaller. The scaling
ansatz is then verified, since at a fixed value of an RG invariant quantity we have
that the two-dimensional space of control parameters L and β is mapped onto a
single curve which is a one-dimensional space, which is exactly what we described in
Chapter 1 describing Widom scaling.

We just presented also the local point of since it gives us a useful bridge to the
standard equilibrium techniques. However, our final estimates are based on the
global point of view, so let us continue with the analysis of the complete scaling
form. Looking at (5.24) it clearly appears that the derivative term ∂Ũ4/∂ε, when
evaluated in ε = 0, must be sensibly different from zero for finite-size effects to allow
a determination of the critical temperature. We expect this factor to be small at
small values of Rξ and to increase as equilibrium is approached. Hence, in principle,
it would be possible to set a very small maximum value of Rξ but then one would
need a very large statistics in order for this derivatives to significantly differ from
zero in the statistical errors. Hence Rξ should be set to a small value, but still large
enough to have a reasonable sensitivity of the results on system sizes.

Since we already knew with good precision the value of the critical temperature
[39] we chose a small temperature interval, so that we can expand the scaling relation
to first order in ε. We have also performed some analyses using a second-order
approximation, without observing significant differences. As for the correction-
to-scaling function, we have verified that we can assume it to be independent of
temperature. Finally, we should make approximations for the nonlinear scaling fields.
Relying on the analysis of Ref. [39], we set uω(β) = 1, neglecting the additional
corrections. Hence, each Binder cumulant was fitted to

U#(t, L, β) = P1(Rξ) + P2(Rξ)(β − βc)L1/ν + P3(Rξ)L−ω, (5.25)

with P1(Rξ), P1(Rξ), and P3(Rξ) polynomials of degree 6, 3, and 3, respectively.
Using the linearized scaling ansatz (5.25) we can give a clear interpretation of

the finite-size data dependence which is visible in figures 5.4 and 5.5. The terms
P2(Rξ)(β − βc)L1/ν and P3(Rξ)L−ω represent corrections to the critical fixed point
value P1 for every value of Rξ: the first one codifies corrections due to off-critical
data while the second one clearly codifies finite-size corrections. As L grows the two
contributions behave differently

lim
L→∞

P2(Rξ)L1/ν = const, lim
L→∞

P3(Rξ)L−ω = 0. (5.26)

This means that the sign of the sum P2(Rξ)(β − βc)L1/ν + P3(Rξ)L−ω changes
according to the relative magnitudes of the two terms and weather if the system
is in the spin glass, i.e. β − βc > 0, or in the paramagnetic phase, i.e. β − βc < 0.
Hence, looking at 5.4 and 5.5, for low values of β in the paramagnetic phase, one
can see that the corrections to the critical behaviour change sign as the linear size L
increases because the off-critical corrections are larger than finite-size ones, while
for higher values of β, in the spin glass phase, the sign of the correction does not
depend on the linear size.

2Symbols: empty red square (L = 8), blue empty circles (L = 10), orange empty triangles
(L = 12), green empty pentagons (L = 16), red filled squares (L = 20), green filled circles (L = 24),
blue filled triangle(L = 32), purple filled pentagon (L = 48).
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The fit of the five Binder cumulants is quite complex, as we take ω, βc, ν, and
the coefficients of the polynomials as free parameters. As a whole, there are 78 free
parameters that must be optimized. Additionally, one should choose the goodness-
of-fit function that is optimized in the fitting procedure. Any choice provides correct
estimates (i.e., estimates that converge to the exact result when the error on the input
data goes to zero), but they may provide results of different precision. Moreover,
the results obtained by using different goodness-of-fit functions are affected by the
neglected next-to-leading corrections in a different way. We have thus made two
different, inequivalent choices, obtaining similar results. More details can be found
in the appendix.

As usual in this type of analyses, the most difficult issue is the estimation of
the systematic errors due to the neglected correction terms. This is very important
here, since the attainable values of L are quite small. We have thus performed
fits with several types of cuts. We perform fits including each time only data
satisfying L ≥ Lmin, ξ ≥ ξmin, and Rξ ≥ Rξ,min, considering several values for Lmin,
ξmin, and Rξ,min. Results obtained by taking 3 ≤ ξmin ≤ 5, 8 ≤ Lmin ≤ 12, and
0 ≤ Rξ,min ≤ 0.4 show some scatter, which is somewhat larger than statistical errors,
indicating that the neglected systematic effects may be as important as the statistical
ones. The most crucial parameter is ξmin. When such a parameter is increased from 3
to 4, the exponent ω decreases sharply, by more than one error bar, while βc increases.
Such a systematic drift occurs also when ξmin is further increased to 5, but now the
change is much less than one error bar. Therefore, the results we quote correspond
to fits with ξmin = 4. For such a value of ξmin, the analysis, which a a priori should
be least affected by the additional scaling corrections, gives βc = 0.911(2), 0.916(4),
0.909(4) for Lmin = 8, 10, 12 and Rξ,min = 0, and βc = 0.911(2), 0.909(2), 0.909(3)
for Rξ,min = 0, 0.2, 0.4 and Lmin = 8. No systematic trends can be observed, all
estimates being consistent within errors. Except for one estimate, all results (with
their errors) we are quoting here lie in the interval 0.906 ≤ βc ≤ 0.913. Hence, we
take

βc = 0.910(4) (5.27)

as our final estimate. The error, which is twice the error affecting the results
with Lmin = 8, is somewhat subjective and should take into account the effect of
the neglected next-to-leading scaling corrections. The results of all analyses are
consistent with estimate (5.27) within one combined error bar. Analogously, we can
estimate ω and ν obtaining

ω = 1.3(2), ν = 2.47(10). (5.28)

The estimates of ω are strongly correlated with those of βc: the larger βc, the smaller
ω is. If βc = 0.906, fits keeping βc fixed give ω ≈ 1.5, while ω ≈ 1.1 is obtained by
fixing βc = 0.914. The exponent ν is instead much less correlated with βc, changing
at most by ±0.03 when βc varies by ±0.004.

To show the quality of the results, in Fig. 5.7, we report ∆U4, defined by

∆U4(β, L,Rξ) = U4(β, L,Rξ)− P3(Rξ)L−ω, (5.29)

versus εL1/ν . We consider Rξ = 0.25, 0.35, and 0.45. Very good scaling is observed,
confirming the correctness of the scaling Ansatz and the accuracy of the estimates
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Figure 5.7. Plot of ∆U4 versus εL1/ν = (β − βc)L1/ν . Data collapse onto a single curve
also far away from equilibrium.3

of the critical exponents. Note also that the data lie on an essentially straight
line, validating our choice of expanding fU (Rξ, ε) to first order in ε. From the
figure, we can also clarify why a large number of samples, of order 106, is needed
to estimate the critical parameters. For instance, U4 at Rξ = 0.35 varies by 0.04
within our temperature interval. Hence, the temperature dependence of the data
can be observed only if the errors on U4 are significantly less than 10−2, for instance,
if they are equal to 10−3. Since errors scale as a/

√
Ns with a ≈ 1 for all values of

L, a 10−3 error is obtained by taking Ns ≈ 106. Note that this requirement is not
specific of the off-equilibrium method we use. Also equilibrium analyses require Ns

to be large [105, 39, 31].

5.4 Anomalous dimension and dynamic exponent
The analysis we have performed for the Binder cumulants can be extended to the
susceptibility. The finite-time scaling behavior can now be written as

lnχ = (2− η) lnL+ P1(Rξ) + (β − βc)L1/νP2(Rξ) + L−ωP3(Rξ) + P4(β), (5.30)

where the last term P4(β) is the contribution of the nonlinear scaling field associated
with the magnetic field, see Ref. [105, 39] for a discussion. A good parametrization
is obtained by taking P1(Rξ), P2(Rξ), P3(Rξ) as polynomials of degree 6, 3, 3,
respectively, as before. For the P4(β), we set P4 = a4β. We obtain at the end the
final estimate

η = −0.39(1), (5.31)
3Symbols: empty red square (L = 8), blue empty circles (L = 10), orange empty triangles

(L = 12), green empty pentagons (L = 16), red filled squares (L = 20), green filled circles (L = 24),
blue filled triangle(L = 32), purple filled pentagon (L = 48).
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which is fully consistent with those of Refs. [39, 31]. Finally, we estimate z by
requiring data to satisfy the general scaling form with the dependence on tL−z,
rather than on Rξ. We obtain

z = 6.80(15), (5.32)

where the error should be quite conservative. In figure 5.8 we report the scaling
at the estimated critical inverse temperature βc ∼ 0.910 for U4 and χ, in order
to show the quality of the estimation of η and z. Indeed, by comparing the top

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

χ
L
−
(2

−
η
)

Rξ

10−3

10−2

10−1

100

10−12 10−10 10−8 10−6 10−4 10−2 100

χ
L
−
(2

−
η
)

tL−z

1.4
1.6
1.8
2

2.2
2.4
2.6
2.8
3

3.2

10−12 10−10 10−8 10−6 10−4 10−2 100

U
4

tL−z

L = 8
L = 10
L = 12
L = 16
L = 20
L = 24
L = 32
L = 48

L = 8
L = 10
L = 12
L = 16
L = 20
L = 24
L = 32
L = 48

L = 8
L = 10
L = 12
L = 16
L = 20
L = 24
L = 32
L = 48

Figure 5.8. Top panel: critical scaling of χL−(2−η) as a function of Rξ. Data collapse is
very good. Middle panel: critical scaling of χL−(2−η) as a function of tL−z in log-log
scale. Finite-size corrections are much larger with respect to the top panel. Bottom
panel: critical scaling of U4 as a function of tL−z. Also in this case finite-size corrections
are considerably large.

and the middle panels, it clearly appears that χL−(2−η) data have a better scaling
as a function of Rξ than as a function of tL−z. This happens because finite-size
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corrections are larger when using the time parametrization. This further justifies our
choice for the out-of-equilibrium scaling ansatz in terms of RG invariant quantities.

5.5 Consistency checks
Now that we have estimated all needed critical parameters it is possible to perform
two different checks

• we can check the scaling of temperature derivatives with the exponent ν;

• we can check the range of validity of the infinite-volume limit behaviour.

5.5.1 Temperature derivatives

In figures 5.9 and 5.10 we report the critical temperature scaling of L−1/νdβU4 and
L−1/νdβ logχ as functions of Rξ in order to evaluate the quality of the estimate of ν.
The scaling in terms of tL−z would just introduce ulterior finite-size corrections hence
we do not report it. Indeed, these two quantities show a very different behaviour.
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Figure 5.9. Critical scaling of dβU4 as a function of Rξ. Finite-size corrections are small.

In figure 5.9 no finite-size corrections are visible. We reported the data at β = 0.910.
However, have we plotted those at β = 0.880 we would have still obtained a good
data collapse. It is clear that this observable requires even more statistics than that
we acquired.

In figure 5.10 data for L−1/νdβ logχ have less severe statistical errors, this is
why we could plot data up to L = 32 without introducing fuzzy points. Data show,
differently from those of L−1/νdβU4, very strong finite-size corrections. Had we
plotted the data for β = 0.880 the order of the curves would have not changed. This
means that finite-size corrections are always larger than off-critical corrections at
least in this temperature range: a cut at a fixed value of Rξ would not have shown
any crossing point.
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Figure 5.10. Critical scaling of dβ logχ as a function of Rξ. Strong finite-size corrections
are visible.

5.5.2 Infinite-volume regime

Let us now check whether it is possible to observe the infinite-volume behaviour we
described in Chapter 4 and which is at the basis of most of the out-of-equilibrium
techniques that were developed before. Let us write the finite-time scaling ansatz
for the susceptibility and the correlation length

χ ∼ t(2−η)/zFt(εL1/ν , tL−z)
[
1 + ui1

tω1/z
f1t(εL1/ν , tL−z)

]
,

ξ ∼ t1/zGt(εL1/ν , tL−z)
[
1 + ui1

tω1/z
g1t(εL1/ν , tL−z)

]
.

(5.33)

At a fixed value of εL1/ν the infinite-volume regime is located by a weak dependence
of the scaling functions on tL−z, since in the thermodynamic limit tL−z → 0. One,
then expects that, for sufficiently large lattices and for sufficiently small times, data
for ξt−1/z and χt−(2−η)/z to assume a nearly constant value as a function of tL−z.
We report in figure 5.11 such a scaling plot for both observables at the estimated
critical point.

Looking at the figure it is clear that the thermodynamic-limit behaviour begins to
be noticeable only for L = 48. Moreover, such a regime is reached only after a rather
long initial transient. Large finite-size corrections are also present signaling that for
the three-dimensional Edwards-Anderson model one needs to simulate much larger
systems in order to obtain reliable estimates with this method. Hence, the waiting
times of many of the previous works [92, 95] (tw ≤ 1600) seem to be insufficient for
a good estimation of the infinite-volume behaviour, thus explaining the ω ∼ 2.9(6)
result of [91].

In order to appreciate finite-size correction in the tL−z dependence we can cut
the U4 data at fixed values of Rξ and plot them as in figure 5.12. We should compare



5.5 Consistency checks 85

1

2

3

4

5

6

7

8

9

10

10−12 10−10 10−8 10−6 10−4 10−2 100

χ
t−

(2
−
η
)/

z

tL−z

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

10−12 10−10 10−8 10−6 10−4 10−2 100

ξ
t−

1
/
z

tL−z

L = 8
L = 10
L = 12
L = 16
L = 20
L = 24
L = 32
L = 48

L = 8
L = 10
L = 12
L = 16
L = 20
L = 24
L = 32
L = 48

Figure 5.11. Top panel: critical scaling of χt−(2−η)/z as a function of tL−z. The ther-
modynamic regime begins to be visible only for L = 48. It is clear that a rather long
initial regime has to be discarded before the infinite-volume regime is attained, thus
explaining the deviations of the previous estimates of the critical temperature. Bottom
panel: critical scaling of ξt−1/z as a function of tL−z. Again, the infinite-volume regime
begins to be visible only for L = 48. Early-time corrections are masked by the large
statistical errors.

this graph with 5.6. Indeed, very strong finite-size corrections are visible for small
lattices while some collapsing is present for the larger ones.

These results still supports our approach highlighting the difficulties one has to
face in treating spin glasses in the finite-time scaling scheme, thus explaining why
earlier works reported wrong estimates for the critical parameters.



86 5. Out-of-equilibrium Results

2.59

2.6

2.61

2.62

2.63

2.64

1.5e-05 2e-05 2.5e-05 3e-05 3.5e-05 4e-05 4.5e-05 5e-05 5.5e-05 6e-05 6.5e-05

U
4

tL−z

Rξ = 0.25

2.21
2.22
2.23
2.24
2.25
2.26
2.27

8e-05 0.0001 0.00012 0.00014 0.00016 0.00018 0.0002 0.00022 0.00024 0.00026

U
4

tL−z

Rξ = 0.35

1.88

1.89

1.9

1.91

1.92

1.93

0.00035 0.0004 0.00045 0.0005 0.00055 0.0006 0.00065 0.0007 0.00075 0.0008

U
4

tL−z

Rξ = 0.45

Figure 5.12. Temperature dependence of U4 for fixed values of Rξ. A shift in temperature
has been added in order to highlight finite-size dependence4.

5.6 Final remarks

It is interesting to compare these results with previous ones, see Table 5.1. For the
critical-point position, our estimate Tc = 1/βc = 1.099(5) agrees within errors with
the estimates Tc = 1.102(3) and Tc = 1.109(10) of Refs. [31, 39], obtained from the
analysis of equilibrium results. Our error is larger than that reported in Ref. [31],
but note that our final error includes a subjective estimate of the systematic error.
Had we reported only the statistical error for Lmin = 8, we would have obtained the
same accuracy. The estimates of ν are also consistent, while our final estimate of ω
is slightly larger, though still consistent within error bars, than previous ones. In
particular, the error quoted in Ref. [39] appears to be underestimated. Previous
dynamic estimates of Tc were not consistent with the equilibrium estimates of
Refs. [31, 39]. It is now clear that the reported errors are probably underestimated,

4Symbols: empty red square (L = 8), blue empty circles (L = 10), orange empty triangles
(L = 12), green empty pentagons (L = 16), red filled squares (L = 20), green filled circles (L = 24),
blue filled triangle(L = 32), purple filled pentagon (L = 48), black empty circles (L = 64).
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as a consequence of the neglect of the subleading scaling corrections in the analyses.

Method Tc ν η ω z

Equilibrium
dynamics [87] 1.175(25) 6.1(3)

Equilibrium and
off-equilibrium

mixing

[89] 1.17(1) −0.25(2) 6.0
[90] 1.20(1) −0.21(2)
[91] 1.195(15) 2.9(6) 5.65(15)
[92] 1.19(1) −0.22(2) 5.7(2)

Off-equilibrium
response function [95] 1.135(5)

Non-equilibrium
relaxation [97] 1.12(12)sys

Extrapolation
technique [98] 1.155(3) β = 0.52(9)

Off-equilibrium
relaxation time [102] 1.17(4) 1.5(3) γ = 3.6(6) 6.2(2)

Off-equilibrium scaling [103] 1.18(1) 1.40(5) −0.20(1)

Equilibrium
FSS

[39] 1.109(10) 2.45(15) −0.375(10) 1.0(1)
[31] 1.1019(29) 2.562(42) −0.3900(36) 1.12(10)

Dynamics at the
critical temperature [25] 6.86(16)

Our results 1.099(5) 2.47(10) −0.39(1) 1.3(2) 6.80(15)
Table 5.1. Results for critical parameters for various off-equilibrium techniques and most

recent equilibrium finite-size scaling (FSS) estimations [39, 31]. The exponents β and γ
are related to ν and η by β = ν(1 + η)/2, γ = ν(2− η).

The method we have discussed represents a significant improvement with respect
to equilibrium analyses. Indeed, since the scaling variable is tL−z, the time needed
to extend Metropolis runs from any value of Rξ to equilibrium scales as Lz, i.e.,
as L7 given that z ≈ 7 for the Ising spin glass. Hence, the advantage is very
large and increases rapidly with L. To make a fair comparison with equilibrium
studies, we should, however, take into account that in those studies one combines
the parallel-tempering method with the Metropolis or heat-bath algorithm [106].
It is not clear how equilibration times scale for this combined algorithm, and in
particular, how long it takes to thermalize the hard samples. However, the results
reported in Ref. [31] are consistent with a sample-dependent time that scales as
L2 for the samples that equilibrate fast and as L7 for those that are slower. The
off-equilibrium method is still significantly faster. A more direct comparison can
be obtained by using the results published in Ref. [31]. In our simulations at the
critical point, runs extending up to Rξ ≈ 0.5 require 2.5 · 106, 16 · 106 Metropolis
sweeps for L = 24 and 32, respectively. In the parallel-tempering simulations for
L = 32 of Ref. [31], the number of iterations discarded for thermalization varies
between 8 · 106 and 500 · 106 (on average 13 · 106) sweeps. Taking into account that
22 different systems are simulated together, our simulations are shorter by a factor
of 10 at least. If one were stopping the off-equilibrium runs at Rξ = 0.40, one would
gain an additional factor of 3 for this value of L.

In spite of the significant improvement with respect to equilibrium studies, the
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computing time needed for a simulation scales as Lz even off-equilibrium, since we
need to collect data at fixed Rξ for all values of L. This requirement makes our
method not suitable to investigate large system sizes. As errors are independent of
system size as a consequence of the absence of self-averaging, the Monte Carlo time
needed to obtain the same statistical errors scales also as Lz. This explains why the
bulk of our statistics corresponds to L ≤ 32. If we increase L, we should increase
t at the same time, making simulations far too long. If βc were known, one could
change strategy and consider an infinite-volume method, i.e., perform fixed-length
runs in very large volumes. However, one immediately realizes that there is no
such thing as a free lunch with spin glasses. Indeed, with this strategy one would
collect data up to ξ ≈ ξmax, for a small value of ξmax (the larger L, the smaller ξmax
for a given Monte Carlo time). But now, if ξmax is small, there would be (large)
scaling corrections proportional to ξ−ω. To reduce them, one should increase ξmax,
which in turn requires an increase of the volume to keep size effects small. At the
end of the story, it is easy to realize that such an infinite-volume method would be
more problematic (size effects would introduce systematic out-of-control corrections)
than the one we propose. The reasons are the same that convinced researchers
to abandon infinite-volume methods to compute critical exponents in equilibrium,
relying instead on finite-size scaling methods.

Let us now summarize our results. We have presented a new dynamic off-
equilibrium method suitable for the determination of the critical temperature and
for the critical exponents. Such a method represents a significant improvement with
respect to previous ones. In particular, there is no need for L to be large enough
to avoid finite-size effects—thus, a source of systematic errors is absent—nor does
it require an a priori knowledge of the critical temperature. We have used the
method to determine critical exponents and temperature for the ±J Ising model.
With a relatively modest investment of computing time, thanks also to a very
efficient GPU implementation of the MC dynamics, we obtain results that have a
comparable precision with that of the estimates of Ref. [31], which are the most
precise equilibrium estimates available today.

We want to stress that the method is completely general and can be applied to
any pure or disordered system.
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Chapter 6

Summary of results

In this thesis we presented a new out-of-equilibrium finite-size scaling analysis based
on the Renormalization Group, consisting in an off-equilibrium generalization of the
commonly used Binder crossing criterion. This method allowed us to obtain accurate
estimates of the critical parameters of the tree-dimensional Edwards-Anderson model,
the second most precise so far, which are compatible with previous equilibrium results
reported in the following table

Method Tc ν η ω z

Equilibrium
FSS

[39] 1.109(10) 2.45(15) −0.375(10) 1.0(1)
[31] 1.1019(29) 2.562(42) −0.3900(36) 1.12(10)

Dynamics at the
critical temperature [25] 6.86(16)

Our results 1.099(5) 2.47(10) −0.39(1) 1.3(2) 6.80(15)

Indeed, these results represent a major improvement with respect to those
obtained using previously developed out-of-equilibrium methods that we reviewed
in this thesis. The most common problem was an underestimation of the errors
leading to incompatible results, among different off-equilibrium techniques, and with
respect to equilibrium estimates. We carefully described the data analysis procedure,
verifying the validity of the approximations we used and showing how to control
systematic deviations.

The precise determination of these parameters has been the subject of many
efforts in the last thirty years, requiring the use of dedicated machines. The fact
that we obtained precise estimates with only 3.1 computational years of a single
GTX Titan GPU shows that the method we propose is robust and accurate. Indeed,
it can be generalized to any continuous phase transition in order to determine the
entire set of the critical parameters.

We also presented some general results we obtained for the GPU implementation
of the Monte Carlo simulations we used. We developed a new memory access pattern
for the cubic-lattice nearest neighbours, and for lagged-Fibonacci-like PRNGs. In
particular we have shown that for the PRNGs we obtain better results with respect
to the cuRand library provided by nVidia. Indeed, these results are of very general
applicability since the cubic-stencil data structure and PRNGs are of widespread
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use. We also implemented a multi-GPU version of the simulation which exhibits a
very good strong scaling leading to scientifically interesting performances for large
lattice sizes.
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Appendix A

Simulations and fitting
procedure details

In this appendix, we report some details of the Monte Carlo calculations and explain
how we have fitted the large set of numerical data to obtain the estimates of βc and
of the critical exponents reported in the text.

The runs we performed are listed in Tables A.1 and A.2. In particular, we report
the number of Monte Carlo Metropolis sweeps and the value Rξ,max obtained at
the end of each run. Such a value varies significantly, but most of the statistics
corresponds to Rξ,max ≈ 0.5. We have also performed some shorter runs with a
significantly larger number of samples and, for L ≤ 16, we have also runs that reach
(barely) equilibrium. At the critical point and at equilibrium [31] Rξ = 0.652(3).
We tried to have comparable statistical errors for all value of L, thereby avoiding
fits to be dominated by the results corresponding to small L values. Up to L = 24
this is indeed the case. The number of samples for L = 32 is instead smaller. We
have also data for L = 48 and L = 64 but the number of samples is small, so that
they little contribute to the final results.

A.1 Fitting procedure

Let us discuss how data are fitted. To keep notation as compact as possible we
indicate β and L with a single symbol A, so that a Monte Carlo run is specified
by A = (β, L). Each run provides estimates of the different observables averaged
over the number of samples considered in the run. Indices a, b, . . ., refer to the
different independent runs, so that Aa corresponds to the values of β and L of run
a. Observables estimates are labeled Ûα(A, t), and their corresponding expectation
values Uα(A, t)1, where t is the Monte Carlo time, and also as Ûα(A, R̂ξ), if we
parametrize the Monte Carlo evolution in terms of R̂ξ = ξ̂/L. The Greek index α
runs over the different observables: in our case it runs from 1 to 5. In the simulation
we compute the observables not at all time steps but by using an exponential schedule,
i.e., for

t = ti = b2i/4c, (A.1)
1We generally denote estimators with a hat and their expectation value without it.
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where bxc indicates the largest integer smaller than x. Latin indices i, j, k, run over
the different times at which sampling has been performed. Finally, R̂ξ,ai = R̂ξ(Aa, ti)
is the estimate of R̂ξ at time ti during run a, while the fitting functions are indicated
as Fα(A, R̂ξ, {p̂r}), where {p̂r} corresponds to the set of parameters to be determined.

Using these notations, we start by defining a goodness-of-fit function

G =
∑
aiα

∑
bjβ

[
Ûα(Aa, R̂ξ,ai)− Fα(Aa, R̂ξ,ai, {p̂r})

]
Kaiα;bjβ[

Ûβ(Ab, R̂ξ,bj)− Fβ(Ab, R̂ξ,bj , {p̂s})
]
, (A.2)

where the kernel K has yet to be specified but symmetric under the exchange of
the two groups of indices {aiα} ↔ {bjβ}. The parameters {p̂r} are obtained by
requiring G to be stationary with respect to their variations. If K is positive definite,
the solution can equivalently be obtained by minimizing G with respect to {p̂r}. It
is easy to convince oneself that this procedure is correct, whatever the kernel K
is. The argument goes as follows. Let us indicate with Uα(Aa, Rξ) the exact value
of the quantity Uα for the given values of the parameters. Then, assume that the
functions Fα provide an exact parametrization of the data, so that there are values
{pr} of the parameters so that

Uα(Aa, Rξ) = Fα(Aa, Rξ, {pr}). (A.3)

The quantities {pr} are of course the parameters we wish to estimate. If we use the
exact values for Uα and {pr}, we have G = 0, which implies that the parameters
{pr} are solutions of the stationary equations for any K if Ûα = Uα. We can thus
use a simple continuity argument. Suppose that we estimate {pr} using a given
set of estimates of Uα. Call this estimate {p̂r}1. If we double the statistics, we
obtain more precise estimates Uα and a new estimate {p̂r}2. If we increase again
the precision on Uα, we obtain an estimate {p̂r}3, and so on. It is obvious that, by
increasing the statistics, Ûα converges to Uα. Correspondingly, the estimates {p̂r}1,
{p̂r}2, {p̂r}3 converge to {pr}. Again, K plays no role here.

One can also analyze the issue from a mathematical point of view. One can
prove that the solution of the stationary equations provides a correct estimator of
{pr}. In order to show this let us define primed greek indices as α′ = (a, i, α) and
the following shorter notation

Ûα(Aa, R̂ξ,ai) = Ûα′ , Fα(Aa, R̂ξ,ai, {p̂r}) = Fα′({p̂r}), Kaiα;bjβ = Kα′β′ .

The stationarity equation for G reads

− ∂G

∂p̂u
= 2

∑
α′β′

{
∂Fα′({p̂r})

∂p̂u
Kα′β′

[
Ûβ′ − Fβ′({p̂s})

]}
= 0, (A.4)

since Kα′β′ = Kβ′α′ . Now, in the limit of Nβ′ → ∞ we obtain that Ûβ′ → Uβ′ so
that the stationarity condition (A.4) is satisfied if {p̂r} → {pr}, indipendently on
the choice of Kα′β′ . I we now assume a linear dependence of the functions Fα′ on
the parameters {p̂r}, i.e.

Fα′({p̂r}) =
∑
r

p̂r Fα′,r,
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the stationarity condition (A.4) becomes

− ∂G

∂p̂u
= 2

∑
s

∑
α′β′

{
Fα′,uKα′β′

[
Ûβ′ − p̂s Fβ′,s

]}
= 0. (A.5)

The last expression is equivalent to∑
α′β′

Fα′,uKα′β′ Ûβ′ =
∑
s

∑
α′β′

(Fα′,uKα′β′ Fβ′,s) p̂s =
∑
s

Bus p̂s, (A.6)

where we have defined the matrix Bus =
∑
α′β′ Fα′,uKα′β′ Fβ′,s, whose inverse is

denoted by (B−1)us. The parameters {p̂r} are determined by

p̂r =
∑
u

∑
α′β′

(B−1)ru Fα′,uKα′β′ Ûβ′ . (A.7)

Now, whether the estimates {p̂r} are biased or not depends on the estimatrs Ûα′ .
Since these quantities are Binder cumulants which have been computed through the
jackknife method we can write

〈Ûα′〉 = Uα′ +
1
N2
α′
Bα′ , (A.8)

where the bias is at the order N2
α′ . Hence, the estiates p̂r will also be biased since

〈p̂r〉 =
∑
u

∑
α′β′

(B−1)ru Fα′,uKα′β′ 〈Ûβ′〉

=
∑
u

∑
α′β′

(B−1)ru Fα′,uKα′β′

(
Uβ′ +

1
N2
β′
Bβ′

)

=
∑
u

∑
α′β′

(B−1)ru Fα′,uKα′β′

(∑
s

ps Fβ′,s + 1
N2
β′
Bβ′

)

= pr +
∑
u

∑
α′β′

(B−1)ru Fα′,uKα′β′
1
N2
β′
Bβ′ .

(A.9)

Clearly, if Û would have been a linear estimator then no bias would have occurred.
Hence, the estimators {p̂r} are always correct in the limit Nβ′ →∞.

Although the choice of K is irrelevant for the correctness of the estimator,
different K provide estimators of different precision: the error on the estimated
parameters {p̂r} depends on the choice of the kernel.

It is also important to stress that care should be taken in determining the error
on the estimated parameters—we use the jackknife method—and that G is not
in general a χ2 variable—hence χ2/DOF, where DOF is the number of degrees of
freedom of the fit, cannot be taken as an indicator of the goodness of the fit. It is
easy to verify that the optimal choice for K, i.e., the one that provides results with
the smallest error, corresponds to taking K = S−1, where S is the exact covariance
of the data.



94 A. Simulations and fitting procedure details

Let us show this result. The optimal choice of K is the one tha minimizes the
covariance of the estimates {p̂r} which can be written as

cov(p̂r, p̂s)
=
∑
u v

∑
α′β′γ′δ′

(B−1)ru Fα′,uKα′β′ cov(Ûβ′ , Ûδ′)Kδ′γ′ Fγ′,v (B−1)vs

=
∑
u v

∑
α′β′γ′δ′

(B−1)ru Fα′,uKα′β′ Sβ′δ′ Kδ′γ′ Fγ′,v (B−1)vs,
(A.10)

and the minimum condition reads
∂ cov(p̂r, p̂s)
∂Kµ′ν′

= 0. (A.11)

It is possible to write the variation δ(B−1)rs in terms of that of the direct ma-
trix δBuv. Since δ(

∑
s(B−1)usBsv) = δ(δuv) = 0 we can write δ(B−1)ru =

−
∑
wz(B−1)rw(B−1)uz δBwz leading to

∂(B−1)ru
∂Kµ′ν′

= −
∑
wz

(B−1)rw Fµ′,w Fν′,z (B−1)zu. (A.12)

Finally, we can write the minimum condition (A.11) as

− ∂ cov(p̂r, p̂s)
∂Kµ′ν′

=2
∑
u v

∑
α′β′γ′δ′

∑
wz

(B−1)rw Fµ′,w Fν′,z (B−1)zu Fα′,uKα′β′ Sβ′δ′ Kδ′γ′ Fγ′,v (B−1)vs

−2
∑
u v

∑
γ′δ′

(B−1)ru Fµ′,u Sν′δ′ Kδ′γ′ Fγ′,v (B−1)vs = 0,

(A.13)

which is satisfied if one choses Kα′β′ = (S−1)α′β′ .
In our case, it is not feasible to compute S (we have both strong time correlations

and correlations among the different observables). We have therefore chosen a
diagonal kernel. To check how results depend on the correlation of the data, two
different fits have been performed:

i) We perform a fit that would be optimal for uncorrelated data. We consider

G =
∑
aiα

[
Ûα(Aa, R̂ξ,ai)− Fα(Aa, R̂ξ,ai, p)

]2
/σ2

aiα, (A.14)

where σaiα is the error on Ûα(Aa, Rξ,ai).

ii) If the data in each run were perfectly correlated, it would be natural to
require the contribution of each run to G to be independent of the number
of measurements performed in the run. If this were the case, an optimal fit
would be obtained (we are still ignoring correlations between the different
observables, that should play a minor role) by considering

G =
∑
aiα

[
Ûα(Aa, R̂ξ,ai)− Fα(Aa, R̂ξ,ai, p)

]2
/(σ2

aiαNa), (A.15)
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where Na is the number of points of run a that are considered in the fit (note
that the index i runs from 1 to Na).

Both fits provide statistically correct estimates of the parameters, but a priori the
errors on the parameters are expected to be different. Note also that, in the presence
of subleading corrections, the two fits give different weight to the runs with small
and large L. Indeed, as L increases, the total time of the simulation increases and so
does the number of measurements. Therefore, fit (i) gives more weight to the runs
with larger L values with respect to fit (ii). Hence, from the point of view of the
systematic errors, results of fit (i) should be more reliable than those of fit (ii).

A.1.1 Results of the fits of the renormalized couplings

Each renormalized coupling U(t, L, β) was fitted to

U(t, L, β) = P1(Rξ) + P2(Rξ)(β − βc)L1/ν + P3(Rξ)L−ω, (A.16)

with P1(Rξ), P1(Rξ), and P3(Rξ) polynomials of degree 6, 3, and 3, respectively.
The five RG couplings were fitted together. We perform both fits of type (i) and of
type (ii) The results of the fits for βc, ω, and ν are reported in Tables A.3, A.4, and
A.5. They correspond to ξmin = 4.

First, we should note the errors on the estimates obtained by using fit (i) and
(ii) are essentially identical. Only in a few cases is fit (ii) slightly less precise than fit
(i). Therefore, from a statistical point of view, the two fits are essentially equivalent.
If we compare the estimates obtained in the two fits, we observe in all cases some
systematic deviations, of size comparable with the statistical errors: for instance, for
a given Lmin and Rξ,min, fit (ii) always provides an estimate of βc that is slightly
larger than that of fit (i). Correspondingly, the estimates of ω are smaller. This
is probably the effect of the next-to-leading scaling corrections, which are treated
differently in the two fits. In practice, this implies the presence of neglected scaling
corrections that may give errors of the same order of the statistical errors. A
subjective (hopefully conservative) estimate of these effects is presented below.

Second, note that the fits with Rξ,min = 0 have errors essentially identical to
those obtained with Rξ,min = 0.20. This is clearly related to the fact that the
bulk of the statistics corresponds to Rξ > 0.20. Indeed, since we are reporting
results corresponding to ξmin = 4, only results with L ≥ 24 contribute in the region
Rξ < 0.20. Since this is a rather small set of data, they do not play much role in the
analysis, hence results are the same for Rξ,min = 0 and Rξ,min = 0.20.

In Figs. A.1 and A.2 we report the scaling functions P2(Rξ) and P3(Rξ). The
errors are determined with a jackknife procedure at fixed parametrization. They
do not include the systematic error due to the parametrization, hence errors could
be underestimated, especially for Rξ . 0.2, where we have a limited number of
data points. From the figures, it is evident that U22 and U23 play no role in the
determination of βc and ν: the β dependence of these two quantities is too small. For
U14 and U13, P2(Rξ) is determined with increasing accuracy as Rξ increases. These
two renormalized couplings play an increasingly important role in the determination
of βc and ν as Rξ increases. The usual Binder parameter U4 appears to be the most
reliable quantity. Note, however, that it approximately vanishes for Rξ ≈ 0.20, hence
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Figure A.1. We report the scaling functions P2(Rξ) (left) and P3(Rξ) (right) for U4 (top),
U13 (middle), and U14 (bottom). We report the results obtained for Lmin = 8, Lmin = 10,
and Lmin = 10, taking always ξmin = 4 and Rξ,min = 0. Data labeled “8,0.2" are obtained
taking Lmin = 8 and Rξ,min = 0.2.

requiring runs to go much beyond this value to allow us to determine accurately the
critical parameters.

The plot of the correction-to-scaling function P3(Rξ) shows that corrections to
scaling are usually larger at equilibrium than during the off-equilibrium transient,
the only exception being U4. This implies that equilibrium estimates are those that
are most affected by systematic deviations due to corrections to scaling. It is also
interesting to observe that P3(Rξ) ≈ 0 for Rξ ≈ 0.13, 0.15 for all observables. The
apparent stability of the results is due to the fact that we are reporting data at fixed
parametrization, i.e., for a fixed order of the polynomials. If we increase the order
of the polynomial parametrizing P3(Rξ), we obtain a curve that deviates from that
reported in the figure for Rξ . 0.20. Hence, the graphs we report cannot be trusted
below this value of Rξ. This is not surprising, since in this range of Rξ we only have
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Figure A.2. We report the scaling functions P2(Rξ) (left) and P3(Rξ) (right) for U22
(top), U23 (bottom). We report the results obtained for Lmin = 8, Lmin = 10, and
Lmin = 10, taking always ξmin = 4 and Rξ,min = 0. Data labeled “8,0.2" are obtained
taking Lmin = 8 and Rξ,min = 0.2.

data with L = 32, 48, and 64, which are sufficient to estimate the correction term.
To estimate βc let us consider the results of fit (i). Results corresponding to

Lmin = 8, 10, 12 lie in the intervals 0.906 ≤ βc ≤ 0.913, 0.910 ≤ βc ≤ 0.926, and
0.905 ≤ βc ≤ 0.913, respectively (we consider the central value plus/minus one error
bar). The results for Lmin = 8 and 12 are consistent, allowing us to exclude the
presence of systematic effects at this level of precision. Therefore, we set

βc = 0.910(4). (A.17)

The results for Lmin = 10 predict a slightly larger value, but are still consistent
with the estimate above. The estimates of ω and βc are strongly correlated. To
take this correlations into account in fixing the final estimate of ω and its error,
we have repeated the fits, keeping βc fixed. The results are reported in Table A.6.
The estimates of ω are stable with Lmin, the error on βc being the main source of
uncertainty. The exponent ν is instead much less correlated with βc and shows a
slight systematic drift as Lmin is increased from 8 to 10, so that we only take into
account the results with Lmin = 10 and 12. We obtain finally

ω = 1.3(2), ν = 2.47(10). (A.18)



98 A. Simulations and fitting procedure details

A.1.2 Estimates of the exponents η and z

Let us now discuss the determination of the exponent η. Eq. (A.16) can be generalized
to the susceptibility, obtaining

χL−(2−η)uh(β)−2 = fχ(Rξ, ε) + L−ωgχ(Rξ, ε) + . . . , (A.19)

where uh(β) is a nonlinear scaling field (see the discussion in Refs. [105, 39]). Taking
the logarithm of the previous expression, making the same approximations as for
Uα, we obtain the expansion

lnχ = (2− η) lnL+ P1(Rξ) + (β − βc)L1/νP2(Rξ) +
L−ωP3(Rξ) + P4(β). (A.20)

The last term P4(β) is the contribution of the nonlinear scaling field uh(β). A good
parametrization is obtained by taking P1(Rξ), P2(Rξ), P3(Rξ) as polynomials of
degree 6, 3, 3, respectively, as before. For the P4(β), we set P4 = a4β.

Fits have been made keeping βc, ω, and ν fixed to their estimates. Results are
reported in Table A.7. Statistical errors are tiny and can be neglected. The main
source of error on the results is due to the uncertainty on the estimates of βc and
ω. If we vary βc and ω, setting βc = 0.914 and ω = 1.1, the exponent η varies by
−0.01, changing from −0.39 to −0.40. The final estimate is therefore

η = −0.39(1). (A.21)

Finally, we determine the dynamic exponent z. We shall use the scaling form in
terms of tL−z, i.e.,

R(t, L, β) = fR(tL−z, ε) + uω(β)L−ωgR(tL−z, ε) + . . . (A.22)

At variance with the previous analyses, at fixed tL−z, data are not linear in ε, nor
are corrections temperature-independent. Hence, we expand fR(tL−z, ε) to second
order in ε and gR(tL−z, ε) to first order. Hence, we write the fitting function as

R(t, L, β) = P1(tL−z) + (β − βc)L1/νP2(tL−z) +
(β − βc)2L2/νP3(tL−z) + L−ωP4(tL−z) +
(β − βc)L1/ν−ωP5(tL−z). (A.23)

The scaling functions P1(tL−z), . . ., P5(tL−z) are approximated as polynomials
in x = exp(−Lt−1/z)t1/z/L (with this choice of variable, data are mapped in the
interval [0, xmax], with xmax . 0.3). To have a reasonable fit (in fit (i) we require
G to be of the order of the number of data points), we need to consider high-order
polynomials. The leading term P1 is approximated by a 12th-order polynomial in
x, while for the other scaling functions we use 5th-order polynomials. We have
performed fits for both U4 and Rξ, fixing βc, ω, and ν as before. The results are
reported in Table A.8.

The estimates of z obtained by fitting U4 show a tiny dependence on Rξ,min—they
slightly increase as Rξ,min increases— and on Lmin—they decrease as Lmin increases.
These changes are, however, significantly smaller than the systematic error due to
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the uncertainty on βc and ω, which changes z by ±0.10. The estimates of z obtained
by fitting Rξ show a strong dependence on Rξ,min. Only for Rxi,min = 0.2 and 0.4
are the estimates of z consistent with those obtained from the analysis of U4. As
final result we take

z = 6.80(15), (A.24)

which is consistent with all estimates.
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Table A.1. Details of the Monte Carlo simulations. For each run we report the values
of β and L, the number Ns of samples, the Monte Carlo Metropolis sweeps (MCS),
the maximum value of Rξ obtained, and the GPU time needed on a Titan GPU. Here
8 ≤ L ≤ 16.

L β Ns Rξ,max MCS t (hours)

8 0.880 524288 0.613 220 1.4
0.890 524288 0.623 220 1.4

8388608 0.564 212 1
8388608 0.564 212 1

0.896 8388608 0.565 212 1
0.902 524288 0.635 220 1.4

8388608 0.566 212 1
0.906 8388608 0.566 212 1
0.910 524288 0.643 220 1.4

8388608 0.567 212 1
10 0.880 524288 0.613 220 2.7

0.890 524288 0.624 220 2.7
4194304 0.512 213 0.7

0.896 4194304 0.511 213 0.7
0.902 524288 0.636 220 2.7

4194304 0.509 213 0.7
0.906 4194304 0.508 213 0.7
0.910 524288 0.646 220 2.7

4194304 0.507 213 0.7
12 0.880 524288 0.611 220 4.3

0.890 524288 0.623 220 4.3
4194304 0.601 217 5

0.896 4194304 0.605 217 5
0.902 524288 0.637 220 4.3

16777216 0.608 217 0.3
0.906 4194304 0.610 217 5
0.910 524288 0.646 220 4.3

16777216 0.612 217 5
16 0.880 552960 0.609 223 123

2097152 0.578 219 29.2
0.890 532480 0.624 223 118

2097152 0.582 219 29.2
0.896 2097152 0.584 219 29.2

16777216 0.370 217 58.3
0.902 521728 0.638 223 116

2097152 0.585 219 29.2
16777216 0.366 215 13.7

0.906 2097152 0.586 219 29.2
0.910 524288 0.648 223 117

2097152 0.585 219 29.2
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Table A.2. Details of the Monte Carlo simulations. For each run we report the values
of β and L, the number Ns of samples, the Monte Carlo Metropolis sweeps (MCS),
the maximum value of Rξ obtained, and the GPU time needed on a Titan GPU. Here
20 ≤ L ≤ 64.

L β Ns Rξ,max MCS t (hours)

20 0.890 4194304 0.485 219 136
0.896 2097152 0.536 220 136

16777216 0.270 215 34
0.902 2097152 0.533 220 136

19398656 0.267 215 39
0.906 2097152 0.530 220 136
0.910 2097152 0.528 220 136

24 0.880 512000 0.596 224 657
0.890 532480 0.606 224 684

1048576 0.500 221 168
2097152 0.500 221 337

0.896 2097152 0.496 221 337
8650752 0.381 219 347

0.902 520192 0.617 224 668
2097152 0.491 221 337

0.906 2097152 0.487 221 337
0.910 516096 0.622 224 663

2097152 0.483 221 337
32 0.880 331904 0.521 224 1010

0.890 295328 0.515 224 899
0.902 298272 0.505 224 908
0.906 5783552 0.286 220 1100
0.910 307264 0.495 224 936

48 0.880 65536 0.428 226 2964
0.890 65536 0.412 226 2964
0.902 65536 0.394 226 2964
0.910 65536 0.382 226 2964

64 0.890 10304 0.321 227 2008
0.902 11552 0.302 227 2251

Table A.3. Estimates of βc for ξmin = 4 for the two types of fits discussed in the paper for
different Lmin and Rξ,min.

Fit (i) Fit (ii)
Lmin/Rξ,min 0 0.20 0.40 0 0.20 0.40

8 0.911(2) 0.909(2) 0.909(3) 0.912(3) 0.910(2) 0.911(3)
10 0.916(4) 0.913(3) 0.920(6) 0.918(5) 0.915(5) 0.923(8)
12 0.909(4) 0.909(3) 0.913(4) 0.910(3)
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Table A.4. Estimates of ω for ξmin = 4 for the two types of fits discussed in the paper for
different Lmin and Rξ,min.

Fit (i) Fit (ii)
Lmin/Rξ,min 0 0.20 0.40 0 0.20 0.40

8 1.22(10) 1.30(9) 1.26(12) 1.20(10) 1.28(9) 1.21(11)
10 1.05(14) 1.19(13) 0.88(18) 0.99(17) 1.15(15) 0.81(18)
12 1.28(20) 1.39(18) 1.12(18) 1.37(17)

Table A.5. Estimates of ν for ξmin = 4 for the two types of fits discussed in the paper for
different Lmin and Rξ,min.

Fit (i) Fit (ii)
Lmin/Rξ,min 0 0.20 0.40 0 0.20 0.40

8 2.57(6) 2.39(6) 2.39(5) 2.31(5) 2.35(6) 2.34(6)
10 2.52(6) 2.49(6) 2.43(6) 2.53(6) 2.50(6) 2.42(6)
12 2.46(8) 2.41(8) 2.47(8) 2.40(8)

Table A.6. Estimates of ν and ω for ξmin = 4 and Rξ,min at fixed βc = 0.910 (in brackets
the change of the central value as βc is increased by 0.004).

Fit (i) Fit (ii)
Lmin 8 10 12 8 10 12

ν 2.37(5)[+0.03] 2.49(6)[+0.02] 2.46(7)[+0.02] 2.29(5)[+0.02] 2.49(6)[+0.02] 2.45(7)[+0.02]
ω 1.25(3)[-0.16] 1.30(5)[-0.18] 1.24(8)[-0.20] 1.29(3)[-0.16] 1.30(5)[-0.17] 1.27(9)[-0.20]

Table A.7. Summary of the estimates of η for ξmin = 4 at fixed βc = 0.910, ω = 1.3,
ν = 2.47. Estimates are insensitive to changes of ν by ±0.010. In brackets the change of
the last three digits of the estimate as ω is changed to 1.1 and βc to 0.914. The minus
sign in brackets that η becomes approximately equal to −0.40 as βc increases.

Lmin 8 10 12 16

Fit (i) −0.3925(3)[−103] −0.3904(4)[−106] −0.3909(6)[−113] −0.3907(10)[−124]
Fit (ii) −0.3923(3)[−103] −0.3901(4)[−105] −0.3910(6)[−114] −0.3912(10)[−125]

Table A.8. Results of the fits [fit of type (i)] of U4 and Rξ at fixed βc = 0.910, ω = 1.3,
ν = 2.47. In brackets the change of the last two digits if βc is 0.914 and ω is 1.1. We
only use data U(t, L, β) satisfying ξ(t, L, β) > ξmin, L ≥ Lmin, Rξ(t, L, β) > Rξ,min.

Rξ,min/Lmin 8 10 12 16

U4 0 6.854(4)[+94] 6.842(5)[+95] 6.837(6)[+91] 6.817(11)[+81]
0.20 6.858(4)[+98] 6.846(5)[+98] 6.840(7)[+94] 6.826(11)[+86]
0.40 6.870(5)[+108] 6.853(6)[+104] 6.845(11)[+96] 6.846(19)[+88]

Rξ 0 6.736(6)[+37] 6.719(7)[+34] 6.703(8)[+31] 6.604(13)[+12]
0.20 6.834(3)[+85] 6.826(4)[+84] 6.822(5)[+82] 6.817(7)[+81]
0.40 6.841(4)[+87] 6.826(5)[+84] 6.813(8)[+76] 6.812(15)[+70]
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Appendix B

Sublattice results

In this appendix we want to report some of the results we collected for the sublattice
observables we described in Chapter 5. We show these results separately since they
belong to a different data set with respect to those presented in Chapter 5 with
much less disorder realizations and a few lattice sizes L = 8, 16, 32, 64 and L = 128.
Moreover, the scaling analysis was performed assuming that βc = 0.902 as estimated
in [39].

We will show finite-size effects of the centered susceptibility χc and correlation
length ξc for varying values of the sublattice and core sizes. We will see that the
centered sublattice observables behave more similarly to those of real lattices of the
same size the smaller one chooses the size of the core. We also report the behaviour
of Binder cumulants.

Finally, we report the critical dynamic scaling behaviour. Some care is necessary
in understanding which of the many observables are expected to show the same
scaling behaviour.

B.1 Comparison with real lattices

As a first step let us consider the time behaviour of the centered susceptibility
χc and correlation length ξc for different values of Ls and Lc. From figures B.1
and B.2 it appears that data associated to small values of the core volume Lc are
closer to those of the corresponding real lattice. This can be understood since the
smaller the centered volume with respect to which correlations are calculated the
larger the distance from the boundary of the system. Hence the dependence on
different boundary condition is small for small times when the correlation length is
not sufficiently large to discriminate between the two systems. In figure B.3 we keep
fixed the values of the sublattice and core sizes Ls = 8 and Lc = 2 while varying the
embedding lattice size L. We can see that all curves share the early time behaviour
and then separate. The first to separate is the real lattice. For sublattice curves,
the bigger the embedding lattice the longer the curves superpose.
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B.2 Scaling at the critical temperature
We now show the critical dynamic scaling for two different sets of observables: the non-
centered version of Binder cumulants and the centered version of the susceptibility
χc and correlation length ξc.

B.2.1 Binder cumulants

In figure B.4 we report the scaling behaviour of the five Binder cumulants we defined
in Chapter 5 computed for both real lattices and sublattices.

B.2.2 Centered susceptibility and correlation length

In figure B.5 we report the thermodynamic-limit behaviour for the centered sus-
ceptibility and correlation length for both real lattices and sublattices. Again it is
possible to see data superposition at early times. Finally, in figure B.6 we report the
values of χc L−(2−η) as a function of Rcξ. We consider two different sets of scaling
observables belonging to S = L/Ls = 2, C = Ls/Lc = 2 and S = 2, C = 4. Our
out-of-equilibrium finite-size scaling ansatz holds good also for sublattice observables.
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